G. P. Dunn, A. T. Bruce, and H. Ikeda, Cancer immunoediting: from immunosurveillance to tumor escape, Nat. Immunol, vol.3, pp.991-998, 2002.

*. , The first review to propose a comprehensive model of cancer immunoediting based on a global insight into the historical and experimental basis of cancer immunosurveilance

M. Teng, J. Galon, and W. Fridman, From mice to humans: developments in cancer immunoediting, J. Clin. Invest, vol.125, p.3338, 2015.

, * Provides an updated description of tumor resistance to immune effector mechanisms in mice and humans

E. J. Wherry, T cell exhaustion, Nat. Immunol, vol.12, pp.492-499, 2011.

B. Combadiere and C. Liard, Transcutaneous and intradermal vaccination, Human Vaccines, vol.7, pp.811-827, 2011.

T. S. Kupper and R. C. Fuhlbrigge, Immune surveillance in the skin: mechanisms and clinical consequences, Nat. Rev. Immunol, vol.4, pp.211-222, 2004.

H. Wosicka and K. Cal, Targeting to the hair follicles: current status and potential, J. Dermatol. Sci, vol.57, pp.83-89, 2010.

A. Nishibu, B. R. Ward, and J. V. Jester, Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli, J. Invest. Dermatol, vol.126, pp.787-796, 2006.

, * Investigation of LCs ability to collect extra epidermal particles

S. Henri, L. F. Poulin, and S. Tamoutounour, CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells, J. Exp. Med, vol.207, pp.189-206, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502774

, * Shows that LCs may not be mandatory for cross-presentation while providing an elegant characterization of skin DC subsets

K. Yoshida, A. Kubo, and H. Fujita, Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis, J. Allergy Clin. Immunol, vol.134, pp.856-864, 2014.

, * Investigation of LCs ability to collect extra epidermal particles

T. Ouchi, A. Kubo, and M. Yokouchi, Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome, J. Exp. Med, vol.208, pp.2607-2613, 2011.

H. Hemmi, M. Yoshino, and H. Yamazaki, Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-beta1-dependent cells, Int. Immunol, vol.13, pp.695-704, 2001.

V. Flacher, C. H. Tripp, and P. Stoitzner, Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis, J. Invest. Dermatol, vol.130, pp.755-762, 2010.

*. , Reveals the importance of DC targeting in cutaneous delivery and how it increases uptake by DCs

V. Flacher, C. H. Tripp, and B. Haid, Skin langerin+ dendritic cells transport intradermally injected anti-DEC-205 antibodies but are not essential for subsequent cytotoxic CD8+ T cell responses, J. Immunol. Baltim. Md, vol.188, pp.2146-2155, 1950.

, ** Demonstrates that LCs are not essential for CD8+ T cell priming

A. Kissenpfennig, S. Henri, and B. Dubois, Dynamics and Function of Langerhans Cells In Vivo, Immunity, vol.22, pp.643-654, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00165695

U. Ritter, A. Meißner, and C. Scheidig, CD8?-and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis, Eur. J. Immunol, vol.34, pp.1542-1550, 2004.

, * Provides a complete dynamic view of LCs and dDCs under steady state and inflammatory conditions

C. Lee, J. Chen, and H. Chiu, Differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses to single epicutaneous immunization, J. Dermatol. Sci, vol.84, pp.248-257, 2016.

S. Ebner, Z. Ehammer, and S. Holzmann, Expression of C-type lectin receptors by subsets of dendritic cells in human skin, Int. Immunol, vol.16, pp.877-887, 2004.

L. East and C. M. Isacke, The mannose receptor family, Biochim. Biophys. Acta, vol.1572, pp.364-386, 2002.

T. Cao, H. Ueno, and C. Glaser, Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL, Eur. J. Immunol, vol.37, pp.2657-2667, 2007.

P. Stoitzner, C. H. Tripp, and A. Eberhart, Langerhans cells cross-present antigen derived from skin, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.7783-7788, 2006.

J. Idoyaga, C. Cheong, and K. Suda, Cutting edge: langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo, J. Immunol. Baltim. Md, vol.180, pp.3647-3650, 1950.

D. H. Kaplan, A. Kissenpfennig, and B. E. Clausen, Insights into Langerhans cell function from Langerhans cell ablation models, Eur. J. Immunol, vol.38, pp.2369-2376, 2008.

K. Kautz-neu, M. Noordegraaf, and S. Dinges, Langerhans cells are negative regulators of the anti-Leishmania response, J. Exp. Med, vol.208, pp.885-891, 2011.

A. Bobr, I. Olvera-gomez, and B. Z. Igyarto, Acute ablation of Langerhans cells enhances skin immune responses, J. Immunol. Baltim. Md, vol.185, p.4724, 1950.

S. Bedoui, P. G. Whitney, and J. Waithman, Cross-presentation of viral and self antigens by skinderived CD103+ dendritic cells, Nat. Immunol, vol.10, pp.488-495, 2009.

V. Flacher, C. H. Tripp, and D. G. Mairhofer, Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance, EMBO Mol. Med, vol.6, pp.1191-1204, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02381968

D. Dudziak, A. O. Kamphorst, and G. F. Heidkamp, Differential antigen processing by dendritic cell subsets in vivo, Science, vol.315, pp.107-111, 2007.

J. D. Bos and M. M. Meinardi, The 500 Dalton rule for the skin penetration of chemical compounds and drugs, Exp. Dermatol, vol.9, pp.165-169, 2000.

S. Kumar, P. Sahdev, and O. Perumal, Identification of a novel skin penetration enhancement peptide by phage display peptide library screening, Mol. Pharm, vol.9, pp.1320-1330, 2012.

S. Afonin, A. Frey, and S. Bayerl, The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes. Chemphyschem Eur, J. Chem. Phys. Phys. Chem, vol.7, pp.2134-2142, 2006.

A. Gautam, J. S. Nanda, and J. S. Samuel, Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8, Sci. Rep, vol.6, p.26278, 2016.

H. Benson, Transfersomes for transdermal drug delivery, Expert Opin. Drug Deliv, vol.3, pp.727-737, 2006.

M. Lee, M. Shin, and Y. Vc, Transcutaneous antigen delivery system, BMB Rep, vol.46, pp.17-24, 2013.

Q. D. Pham, S. Björklund, and J. Engblom, Chemical penetration enhancers in stratum corneum -Relation between molecular effects and barrier function, J. Controlled Release, vol.232, pp.175-187, 2016.

X. Liu, J. E. Grice, and J. Lademann, Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man, Br. J. Clin. Pharmacol, vol.72, pp.768-774, 2011.

U. Blume-peytavi and A. Vogt, Human hair follicle: reservoir function and selective targeting, Br. J. Dermatol, vol.165, issue.2, pp.13-17, 2011.

Y. Kim and M. R. Prausnitz, Enabling skin vaccination using new delivery technologies, Drug Deliv. Transl. Res, vol.1, pp.7-12, 2011.

D. M. Frerichs, L. R. Ellingsworth, and S. A. Frech, Controlled, single-step, stratum corneum disruption as a pretreatment for immunization via a patch, Vaccine, vol.26, pp.2782-2787, 2008.

B. R. Sloat, K. Kiguchi, and G. Xiao, Transcutaneous DNA immunization following waxing-based hair depilation, J. Control. Release Off. J. Control. Release Soc, vol.157, pp.94-102, 2012.

L. Engelke, G. Winter, and S. Hook, Recent insights into cutaneous immunization: How to vaccinate via the skin, Vaccine, vol.33, pp.4663-4674, 2015.

M. Nasr, A. , S. Alyoussef, and A. A. , A highlight on lipid based nanocarriers for transcutaneous immunization, Curr. Pharm. Biotechnol, vol.16, pp.371-379, 2015.

E. S. Esser, A. Romanyuk, and E. V. Vassilieva, Tetanus vaccination with a dissolving microneedle patch confers protective immune responses in pregnancy, J. Control. Release Off. J. Control. Release Soc, vol.236, pp.47-56, 2016.

K. Van-der-maaden, E. M. Varypataki, and H. Yu, Parameter optimization toward optimal microneedle-based dermal vaccination, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.64, pp.18-25, 2014.

M. An and H. Liu, Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines, Small Weinh. Bergstr. Ger, vol.13, 2017.

J. W. Lee, P. Gadiraju, and J. Park, Microsecond thermal ablation of skin for transdermal drug delivery, J. Control. Release Off. J. Control. Release Soc, vol.154, pp.58-68, 2011.

M. Witting, A. Boreham, and R. Brodwolf, Interactions of hyaluronic Acid with the skin and implications for the dermal delivery of biomacromolecules, Mol. Pharm, vol.12, pp.1391-1401, 2015.

G. M. Glenn, C. P. Villar, and D. C. Flyer, Safety and immunogenicity of an enterotoxigenic Escherichia coli vaccine patch containing heat-labile toxin: use of skin pretreatment to disrupt the stratum corneum, Infect. Immun, vol.75, pp.2163-2170, 2007.

A. Vogt, S. Hadam, and I. Deckert, Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines, Exp. Dermatol, vol.24, pp.73-75, 2015.

, * Proves the feasibility of TC vaccination in humans using a CSSS method

A. A. Ali, C. M. Mccrudden, and J. Mccaffrey, DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles, Nanomedicine Nanotechnol. Biol. Med, vol.13, pp.921-932, 2017.

S. A. Tawde, L. Chablani, and A. Akalkotkar, Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery, J. Controlled Release, vol.235, pp.147-154, 2016.

H. Khong and W. W. Overwijk, Adjuvants for peptide-based cancer vaccines, J. Immunother. Cancer, vol.4, p.56, 2016.

A. K. Kohli and A. Ho, Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge, Int. J. Pharm, vol.275, pp.13-17, 2004.

F. Larese-filon, M. Mauro, and G. Adami, Nanoparticles skin absorption: New aspects for a safety profile evaluation, Regul. Toxicol. Pharmacol, vol.72, pp.310-322, 2015.

A. Ascenso, S. Raposo, and C. Batista, Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes, Int. J. Nanomedicine, vol.10, pp.5837-5851, 2015.

A. Patzelt, H. Richter, and F. Knorr, Selective follicular targeting by modification of the particle sizes, J. Controlled Release, vol.150, pp.45-48, 2011.

S. D. Xiang, A. Scholzen, and G. Minigo, Pathogen recognition and development of particulate vaccines: does size matter?, Methods San Diego Calif, vol.40, pp.1-9, 2006.

C. Foged, B. Brodin, and S. Frokjaer, Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model, Int. J. Pharm, vol.298, pp.315-322, 2005.

A. Vogt, B. Combadiere, and S. Hadam, 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin, J. Invest. Dermatol, vol.126, pp.1316-1322, 2006.

L. Jeanbart, M. Ballester, and . Titta-a-de, Enhancing Efficacy of Anticancer Vaccines by Targeted Delivery to Tumor-Draining Lymph Nodes, Cancer Immunol. Res, vol.2, pp.436-447, 2014.

Y. Fan and J. J. Moon, Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy, Vaccines, vol.3, pp.662-685, 2015.

S. T. Reddy, A. Rehor, and H. G. Schmoekel, In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles, J. Controlled Release, vol.112, pp.26-34, 2006.

S. T. Reddy, A. J. Van-der-vlies, and E. Simeoni, Exploiting lymphatic transport and complement activation in nanoparticle vaccines, Nat. Biotechnol, vol.25, pp.1159-1164, 2007.

T. Fifis, A. Gamvrellis, and B. Crimeen-irwin, Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors, J. Immunol. Baltim. Md, vol.173, pp.3148-3154, 1950.

P. L. Mottram, D. Leong, and B. Crimeen-irwin, Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus, Mol. Pharm, vol.4, pp.73-84, 2007.

, * Demonstrates that particle size is a critical variable in immune response orientation

N. Dragicevic-curic, S. Gräfe, and B. Gitter, Surface charged temoporfin-loaded flexible vesicles: in vitro skin penetration studies and stability, Int. J. Pharm, vol.384, pp.100-108, 2010.

C. Wischke, H. Borchert, and J. Zimmermann, Stable cationic microparticles for enhanced model antigen delivery to dendritic cells, J. Control. Release Off. J. Control. Release Soc, vol.114, pp.359-368, 2006.

T. Nakanishi, J. Kunisawa, and A. Hayashi, Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins, J. Control. Release Off. J. Control. Release Soc, vol.61, pp.233-240, 1999.

Z. Cui and R. J. Mumper, Chitosan-based nanoparticles for topical genetic immunization, J. Control. Release Off. J. Control. Release Soc, vol.75, pp.409-419, 2001.

A. Patzelt, W. C. Mak, and S. Jung, Do nanoparticles have a future in dermal drug delivery?, J. Controlled Release, vol.246, pp.174-182, 2017.

F. Ansaldi, A. Orsi, and D. De-florentiis, Head-to-head comparison of an intradermal and a virosome influenza vaccine in patients over the age of 60: evaluation of immunogenicity, crossprotection, safety and tolerability, Hum. Vaccines Immunother, vol.9, pp.591-598, 2013.

, * A clinical trial demonstrating the immunogenicity and the tolerability of a liposome-based influenza vaccine in elderly

Y. Levin, E. Kochba, and G. Shukarev, A phase 1, open-label, randomized study to compare the immunogenicity and safety of different administration routes and doses of virosomal influenza vaccine in elderly, Vaccine, vol.34, pp.5262-5272, 2016.

, Another successful clinical trial demonstrating the superiority of the skin for the delivery of liposome-based vaccines

F. Ambrosch, G. Wiedermann, and S. Jonas, Immunogenicity and protectivity of a new liposomal hepatitis A vaccine, Vaccine, vol.15, pp.1209-1213, 1997.

, * A successful clinical trial for the evaluation of a liposome-based Hepatitis A vaccine

S. Jain, N. Patel, and M. K. Shah, Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application, J. Pharm. Sci, vol.106, pp.423-445, 2017.

Y. Fan and Q. Zhang, Development of liposomal formulations: From concept to clinical investigations, Asian J. Pharm. Sci, vol.8, pp.81-87, 2013.

R. A. Schwendener, Liposomes as vaccine delivery systems: a review of the recent advances, Ther. Adv. Vaccines, vol.2, p.159, 2014.

M. Mezei and V. Gulasekharam, Liposomes--a selective drug delivery system for the topical route of administration. Lotion dosage form, Life Sci, vol.26, pp.1473-1477, 1980.

*. , The first report on the advantage of liposomes for the transcutaneous route

M. Elsayed, O. Y. Abdallah, and V. F. Naggar, Lipid vesicles for skin delivery of drugs: reviewing three decades of research, Int. J. Pharm, vol.332, pp.1-16, 2007.

G. Cevc and G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, Biochim. Biophys. Acta, vol.1104, pp.226-232, 1992.

*. , The original work that demonstrates and investigates the transfersomes TM ability to cross the skin barrier

K. Matsuo, S. Hirobe, and N. Okada, Frontiers of transcutaneous vaccination systems: novel technologies and devices for vaccine delivery, Vaccine, vol.31, pp.2403-2415, 2013.

J. Wang, J. Hu, and F. Li, Strong cellular and humoral immune responses induced by transcutaneous immunization with HBsAg DNA-cationic deformable liposome complex, Exp. Dermatol, vol.16, pp.724-729, 2007.

V. Gupta, V. Dhote, and B. N. Paul, Development of novel topical drug delivery system containing cisplatin and imiquimod for dual therapy in cutaneous epithelial malignancy, J. Liposome Res, vol.24, pp.150-162, 2014.

R. K. Tyagi, N. K. Garg, and S. K. Dalai, Transdermal immunization of P. falciparum surface antigen (MSP-119) via elastic liposomes confers robust immunogenicity, Hum. Vaccines Immunother, vol.12, pp.990-992, 2016.

T. Rattanapak, K. Young, and T. Rades, Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration, J. Pharm. Pharmacol, vol.64, pp.1560-1569, 2012.

C. K. Song, P. Balakrishnan, and C. Shim, A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation, Colloids Surf. B Biointerfaces, vol.92, pp.299-304, 2012.

S. Espuelas, C. Thumann, and B. Heurtault, Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes, Bioconjug. Chem, vol.19, pp.2385-2393, 2008.

, ** Demonstrates an increased uptake of liposomes when they are targeted with ligands of suitable valency

J. Thomann, B. Heurtault, and S. Weidner, Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting, Biomaterials, vol.32, pp.4574-4583, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00596925

, ** An elegant work demonstrating that minimal peptide-expressing liposomal vaccines induce protective immunity against cancer

, Press Announcements -FDA Approves a Cellular Immunotherapy for Men with Advanced Prostate Cancer, 2017.

, ** The first cancer-vaccine improved by FDA for clinical use

, Press Announcements -FDA approves first-of-its-kind product for the treatment of melanoma, 2017.

, ** The second cancer vaccine improved by FDA for clinical use

M. Karkada, N. L. Berinstein, and M. Mansour, Therapeutic vaccines and cancer: focus on DPX-0907, Biol. Targets Ther, vol.8, p.27, 2014.

N. L. Berinstein, M. Karkada, and M. A. Morse, First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients, J. Transl. Med, vol.10, p.156, 2012.

, * A successful clinical trial of a cancer-specific liposomal based vaccine

G. T. Wurz, C. Kao, and M. Wolf, Tecemotide: an antigen-specific cancer immunotherapy, Hum. Vaccines Immunother, vol.10, pp.3383-3393, 2014.

I. D. Davis, W. Chen, and H. Jackson, Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans, Proc. Natl. Acad. Sci. U. S. A, vol.101, p.10697, 2004.

P. Mitchell, N. Thatcher, and M. A. Socinski, Tecemotide in unresectable stage III non-small-cell lung cancer in the phase III START study: updated overall survival and biomarker analyses, Ann. Oncol, vol.26, pp.1134-1142, 2015.

T. Nicholaou, W. Chen, and I. D. Davis, Immunoediting and persistence of antigen-specific immunity in patients who have previously been vaccinated with NY-ESO-1 protein formulated in ISCOMATRIX TM, Cancer Immunol. Immunother, vol.60, p.1625, 2011.

T. Nicholaou, L. M. Ebert, and I. D. Davis, Regulatory T-Cell-Mediated Attenuation of T-Cell Responses to the NY-ESO-1 ISCOMATRIX Vaccine in Patients with Advanced Malignant Melanoma, Clin. Cancer Res, vol.15, pp.2166-2173, 2009.

J. Chen, A. Dawoodji, and A. Tarlton, NY-ESO-1 specific antibody and cellular responses in melanoma patients primed with NY-ESO-1 protein in ISCOMATRIX and boosted with recombinant NY-ESO-1 fowlpox virus, Int. J. Cancer, vol.136, pp.590-601, 2015.

J. Nemunaitis, T. Jahan, and H. Ross, Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer, Cancer Gene Ther, vol.13, pp.555-562, 2006.

R. L. Sabado, A. Pavlick, and S. Gnjatic, Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma, Cancer Immunol. Res, vol.3, pp.278-287, 2015.

*. , A successful clinical trial showing that transcutaneous administration of a potent adjuvants is crucial for the induction of tumor-specific CD8+ T cell responses against protein antigens

S. Adams, D. W. O'neill, and D. Nonaka, Immunization of malignant melanoma patients with fulllength NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant, J. Immunol. Baltim. Md, vol.181, pp.776-784, 1950.

U. E. Burkhardt, U. Hainz, and K. Stevenson, Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells, J. Clin. Invest, vol.123, pp.3756-3765, 2013.

M. V. Dhodapkar, M. Sznol, and B. Zhao, Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205, Sci. Transl. Med, vol.6, pp.232-51, 2014.

T. Fujiyama, I. Oze, and H. Yagi, Induction of cytotoxic T cells as a novel independent survival factor in malignant melanoma with percutaneous peptide immunization, J. Dermatol. Sci, vol.75, pp.43-48, 2014.

*. , The first and only successful clinical trial where the vaccine peptides and adjuvant are both administred transcutaneously

T. Iwama, T. Uchida, and Y. Sawada, Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice, Biochem. Biophys. Res. Commun, vol.469, pp.138-143, 2016.

S. Shariat, A. Badiee, and S. A. Jalali, P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer, Cancer Lett, vol.355, pp.54-60, 2014.

Z. Kakhi, B. Frisch, and B. Heurtault, Liposomal constructs for antitumoral vaccination by the nasal route, Biochimie, vol.130, pp.14-22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02185418

*. , Demonstrates the ability of well-designed liposome-based vaccines to induce a protective tumor specific response after non invasive administration

Z. Kakhi, B. Frisch, and L. Bourel-bonnet, Airway administration of a highly versatile peptidebased liposomal construct for local and distant antitumoral vaccination, Int. J. Pharm, vol.496, pp.1047-1056, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02348434