KCC2 membrane diffusion tunes neuronal chloride homeostasis - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Neuropharmacology Année : 2020

KCC2 membrane diffusion tunes neuronal chloride homeostasis

Résumé

Neuronal Cl- homeostasis is regulated by the activity of two cation chloride co-transporters (CCCs), the K+-Cl- cotransporter KCC2 and the Na+-K+-Cl- cotransporter NKCC1, which are primarily extruding and importing chloride in neurons, respectively. Several neurological and psychiatric disorders including epilepsy, neuropathic pain, schizophrenia and autism are associated with altered neuronal chloride (Cl-) homeostasis. A current view is that the accumulation of intracellular Cl- in neurons as a result of KCC2 down-regulation and/or NKCC1 up-regulation may weaken inhibitory GABA signaling and thereby promote the development of pathological activities. CCC activity is determined mainly by their level of expression in the plasma membrane. Furthermore, CCCs undergo “diffusion-trapping” in the membrane, a mechanism that is rapidly adjusted by activity-dependent post-translational modifications i.e. phosphorylation / dephosphorylation of key serine and threonine residues. This represents probably the most rapid cellular mechanism for adapting CCC function to changes in neuronal activity. Therefore, interfering with these mechanisms may help restoring Cl- homeostasis and inhibition under pathological conditions.

Domaines

Neurobiologie
Fichier principal
Vignette du fichier
Come et al-revised-22022019-HAL (1).pdf (935.36 Ko) Télécharger le fichier

Dates et versions

hal-02415465 , version 1 (05-02-2023)

Identifiants

Citer

Etienne Côme, Xavier Marques, Jean Christophe Poncer, Sabine Lévi. KCC2 membrane diffusion tunes neuronal chloride homeostasis. Neuropharmacology, 2020, Mobility and trafficking of neuronal membrane proteins, ⟨10.1016/j.neuropharm.2019.03.014⟩. ⟨hal-02415465⟩
28 Consultations
48 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More