B. Hugel, M. C. Martinez, C. Kunzelmann, and J. M. Freyssinet, Membrane microparticles: two sides of the coin, Physiology, pp.22-27, 2005.

J. Ratajczak, M. Wysoczynski, F. Hayek, A. Janowska-wieczorek, and M. Z. Ratajczak, Membranederived microvesicles: important and underappreciated mediators of cell-to-cell communication, Leukemia, vol.20, pp.1487-1495, 2006.

G. Camussi, M. C. Deregibus, S. Bruno, V. Cantaluppi, and L. Biancone, Exosomes/microvesicles as a mechanism of cell-to-cell communication, Kidney international, vol.78, pp.838-848, 2010.

J. J. Jimenez, W. Jy, L. M. Mauro, C. Soderland, L. L. Horstman et al., Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis, Thrombosis research, vol.109, pp.175-180, 2003.

S. F. Mause and C. Weber, Microparticles: protagonists of a novel communication network for intercellular information exchange, Circulation research, vol.107, pp.1047-1057, 2010.

G. Raposo and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends, The Journal of cell biology, vol.200, pp.373-383, 2013.

L. Camacho, P. Guerrero, and D. Marchetti, MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes, PloS one, vol.8, p.73790, 2013.

K. Al-nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May et al., Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells, Nature cell biology, vol.10, pp.619-624, 2008.

J. Skog, T. Wurdinger, S. Van-rijn, D. H. Meijer, L. Gainche et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nature cell biology, vol.10, pp.1470-1476, 2008.

R. C. Lai, T. S. Chen, and S. K. Lim, Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease, Regenerative medicine, vol.6, pp.481-492, 2011.

S. Bates, Progress towards personalized medicine, Drug Discovery Today, vol.15, pp.115-120, 2010.

A. Hubert, C. Subra, M. Jenabian, P. Tremblay-labrecque, C. Tremblay et al.,

J. Provost, C. Routy, and . Gilbert, Elevated Abundance, Size, and MicroRNA Content of Plasma Extracellular Vesicles in Viremic HIV-1+ Patients: Correlations With Known Markers of Disease Progression, Journal of Acquired Immune Deficiency Syndromes, vol.70, pp.219-227, 2015.

D. Mege, L. Panicot-dubois, M. Ouaissi, S. Robert, I. Sielezneff et al.,

C. Dubois, The origin and concentration of circulating microparticles differ according to cancer type and evolution: A prospective single-center study, International Journal of Cancer, vol.138, pp.939-948, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01460678

B. K. Thakur, H. Zhang, A. Becker, I. Matei, Y. Huang et al.,

N. Elemento, K. Paknejad, K. Manova-todorova, J. Welte, H. Bromberg et al., Double-stranded DNA in exosomes: a novel biomarker in cancer detection, Cell Research, vol.24, pp.766-769, 2014.

M. R. Speicher and K. Pantel, Tumor signatures in the blood, Nat Biotechnol, vol.32, pp.441-443, 2014.

I. Tatischeff and A. Alfsen, A new biological strategy for drug delivery: eucaryotic cell-derived nanovesicles, Journal of Biomaterials and Nanobiotechnology, vol.2, pp.494-522, 2011.

J. G. Van-den-boorn, M. Schlee, C. Coch, and G. Hartmann, SiRNA delivery with exosome nanoparticles, Nat Biotechnol, vol.29, pp.325-326, 2011.

B. T. Pan and R. M. Johnstone, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor, Cell, pp.967-978, 1983.

Y. Lee, S. E. Andaloussi, and M. J. Wood, Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy, Human molecular genetics, vol.21, pp.125-134, 2012.

J. C. Akers, D. Gonda, R. Kim, B. S. Carter, and C. C. Chen, Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies, vol.113, pp.1-11, 2013.

C. Thery, L. Zitvogel, and S. Amigorena, Exosomes: composition, biogenesis and function, Nature reviews. Immunology, vol.2, pp.569-579, 2002.

P. A. Leventis and S. Grinstein, The distribution and function of phosphatidylserine in cellular membranes, Annual review of biophysics, vol.39, pp.407-427, 2010.

N. Arraud, R. Linares, S. Tan, C. Gounou, J. M. Pasquet et al., Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration, J Thromb Haemost, vol.12, pp.614-627, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00996592

S. Elmore, Apoptosis: a review of programmed cell death, Toxicologic pathology, vol.35, pp.495-516, 2007.

E. Van-der-pol, A. N. Boing, P. Harrison, A. Sturk, and R. Nieuwland, Classification, functions, and clinical relevance of extracellular vesicles, Pharmacological reviews, vol.64, pp.676-705, 2012.

J. Ratajczak, K. Miekus, M. Kucia, J. Zhang, R. Reca et al., Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery, Leukemia, vol.20, pp.847-856, 2006.

G. Camussi, M. C. Deregibus, S. Bruno, C. Grange, V. Fonsato et al.,

, Exosome/microvesicle-mediated epigenetic reprogramming of cells, American journal of cancer research, vol.1, pp.98-110, 2011.

S. Gatti, S. Bruno, M. C. Deregibus, A. Sordi, V. Cantaluppi et al., Microvesicles derived from human adult mesenchymal stem cells protect against ischaemiareperfusion-induced acute and chronic kidney injury, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association -European Renal Association, vol.26, pp.1474-1483, 2011.

A. Bobrie, M. Colombo, G. Raposo, and C. Thery, Exosome secretion: molecular mechanisms and roles in immune responses, Traffic, pp.1659-1668, 2011.

I. Conde, C. N. Shrimpton, P. Thiagarajan, and J. A. Lopez, Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation, Blood, vol.106, pp.1604-1611, 2005.

J. Rak and A. Guha, Extracellular vesicles--vehicles that spread cancer genes, BioEssays : news and reviews in molecular, cellular and developmental biology, vol.34, pp.489-497, 2012.

H. Peinado, M. Aleckovic, S. Lavotshkin, I. Matei, B. Costa-silva et al.,

C. Hergueta-redondo, G. Williams, C. Garcia-santos, A. Ghajar, C. Nitadori-hoshino et al.,

K. Badal, B. A. Garcia, M. K. Callahan, J. Yuan, V. R. Martins et al., Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET, Nature medicine, vol.18, pp.883-891, 2012.

V. Dolo, S. D'ascenzo, S. Violini, L. Pompucci, C. Festuccia et al.,

A. Canevari and . Pavan, Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro, Clinical & experimental metastasis, vol.17, pp.131-140, 1999.

J. W. Kim, E. Wieckowski, D. D. Taylor, T. E. Reichert, S. Watkins et al., Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes, Clinical Cancer Research, vol.11, pp.1010-1020, 2005.

D. M. Pegtel, K. Cosmopoulos, D. A. Thorley-lawson, M. A. Van-eijndhoven, E. S. Hopmans et al., Functional delivery of viral 30

, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.6328-6333, 2010.

B. Fevrier, D. Vilette, F. Archer, D. Loew, W. Faigle et al., Cells release prions in association with exosomes, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.9683-9688, 2004.

C. Quek and A. F. Hill, The role of extracellular vesicles in neurodegenerative diseases, Biochemical and biophysical research communications, 2016.

S. A. Bellingham, B. B. Guo, B. M. Coleman, and A. F. Hill, Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?, Frontiers in physiology, vol.3, p.124, 2012.

N. Coltel, V. Combes, S. C. Wassmer, G. Chimini, and G. E. Grau, Cell vesiculation and immunopathology: implications in cerebral malaria, Microbes and infection, Institut Pasteur, vol.8, pp.2305-2316, 2006.

L. C. Azevedo, M. A. Pedro, and F. R. Laurindo, Circulating microparticles as therapeutic targets in cardiovascular diseases, Recent patents on cardiovascular drug discovery, vol.2, pp.41-51, 2007.

S. Wan, Z. Zhou, B. Duan, and L. Morel, Direct B cell stimulation by dendritic cells in a mouse model of lupus, Arthritis and rheumatism, vol.58, pp.1741-1750, 2008.

G. Muller, Microvesicles/exosomes as potential novel biomarkers of metabolic diseases, Diabetes, metabolic syndrome and obesity : targets and therapy, vol.5, pp.247-282, 2012.

A. J. Nauta and W. E. Fibbe, Immunomodulatory properties of mesenchymal stromal cells, Blood, vol.110, pp.3499-3506, 2007.

N. K. Satija, V. K. Singh, Y. K. Verma, P. Gupta, S. Sharma et al., Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine, Journal of cellular and molecular medicine, vol.13, pp.4385-4402, 2009.

M. Ratajczak, M. Kucia, T. Jadczyk, N. Greco, W. Wojakowski et al., Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate 31 stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies&quest, Leukemia, vol.26, pp.1166-1173, 2011.

S. Gatti, S. Bruno, M. C. Deregibus, A. Sordi, V. Cantaluppi et al., Microvesicles derived from human adult mesenchymal stem cells protect against ischaemiareperfusion-induced acute and chronic kidney injury, Nephrology Dialysis Transplantation, vol.5, pp.1474-83, 2011.

L. A. Reis, F. T. Borges, M. J. Simoes, A. A. Borges, R. Sinigaglia-coimbra et al., Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats, PloS one, vol.7, p.44092, 2012.

Y. Zhou, H. Xu, W. Xu, B. Wang, H. Wu et al., Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatininduced renal oxidative stress and apoptosis in vivo and in vitro, Stem Cell Research & Therapy, vol.4, p.34, 2013.

M. Herrera, V. Fonsato, S. Gatti, M. Deregibus, A. Sordi et al.,

C. Bussolati, G. Tetta, and . Camussi, Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats, Journal of cellular and molecular medicine, vol.14, pp.1605-1618, 2010.

T. Li, Y. Yan, B. Wang, H. Qian, X. Zhang et al., Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis, Stem cells and development, vol.22, pp.845-854, 2012.

C. Y. Tan, R. C. Lai, W. Wong, Y. Y. Dan, S. Lim et al., Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models, Stem cell research & therapy, vol.5, p.76, 2014.

L. Hu, J. Wang, X. Zhou, Z. Xiong, J. Zhao et al., Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts, Scientific Reports, vol.6, 2016.

J. Zhang, J. Guan, X. Niu, G. Hu, S. Guo et al., Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis, Journal of Translational Medicine, vol.13, p.49, 2015.

T. Furuta, S. Miyaki, H. Ishitobi, T. Ogura, Y. Kato et al.,

. Ochi, Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model, Stem Cells Translational Medicine, vol.5, pp.1620-1630, 2016.

S. Zhang, W. Chu, R. Lai, S. Lim, J. Hui et al., Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration, Osteoarthritis and Cartilage, vol.24, pp.2135-2140, 2016.

H. Xin, Y. Li, Y. Cui, J. J. Yang, Z. G. Zhang et al., Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats, Journal of Cerebral Blood Flow & Metabolism, vol.33, pp.1711-1715, 2013.

L. Alvarez-erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat Biotech, vol.29, pp.341-345, 2011.

V. C. Ridger, C. M. Boulanger, A. Angelillo-scherrer, L. Badimon, O. Blanc-brude et al.,

E. Bochaton-piallat, E. I. Boilard, A. Buzas, F. Caporali, and . Dignat-george, Microvesicles in vascular homeostasis and diseases, vol.117, pp.1296-1316, 2017.

A. Vion, B. Ramkhelawon, X. Loyer, G. Chironi, C. Devue et al.,

C. M. Lehoux and . Boulanger, Shear stress regulates endothelial microparticle release, Circulation research, vol.112, pp.1323-1333, 2013.

E. Hergenreider, S. Heydt, K. Tréguer, T. Boettger, A. J. Horrevoets et al.,

A. S. Scheffer, X. Frangakis, M. Yin, and . Mayr, Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs, Nature cell biology, vol.14, pp.249-256, 2012.

Y. Chen, Y. Chen, and J. Wang, Absolute hypoxic exercise training enhances in vitro thrombin generation by increasing procoagulant platelet-derived microparticles under high shear stress in sedentary men, Clinical Science, vol.124, pp.639-649, 2013.

Y. Chen, J. Chen, and J. Wang, Strenuous exercise promotes shear-induced thrombin generation by increasing the shedding of procoagulant microparticles from platelets, Thrombosis and haemostasis, vol.103, pp.293-301, 2010.

K. S. Sakariassen, P. A. Holme, U. Ørvim, R. M. Barstad, N. O. Solum et al., Shearinduced platelet activation and platelet microparticle formation in native human blood, Thrombosis research, vol.92, pp.33-41, 1998.

A. Piccin, W. G. Murphy, and O. P. Smith, Circulating microparticles: pathophysiology and clinical implications, Blood reviews, vol.21, pp.157-171, 2007.

C. Frühbeis, S. Helmig, S. Tug, P. Simon, and E. , Krämer-Albers, Physical exercise induces rapid release of small extracellular vesicles into the circulation, Journal of extracellular vesicles, vol.4, p.28239, 2015.

N. Korin, M. J. Gounis, A. K. Wakhloo, and D. E. Ingber, Targeted drug delivery to flow-obstructed blood vessels using mechanically activated nanotherapeutics, vol.72, pp.119-122, 2015.

J. M. Siegel, C. P. Markou, D. N. Ku, and S. Hanson, A scaling law for wall shear rate through an arterial stenosis, Journal of biomechanical engineering, vol.116, pp.446-451, 1994.

P. Diehl, F. Nagy, V. Sossong, T. Helbing, F. Beyersdorf et al., Increased levels of circulating microparticles in patients with severe aortic valve stenosis, Thrombosis and Haemostasis, vol.99, pp.711-719, 2008.

N. Kuriyama, Y. Nagakane, A. Hosomi, T. Ohara, T. Kasai et al., Evaluation of factors associated with elevated levels of platelet-derived microparticles in the acute phase of cerebral infarction, Clinical and Applied Thrombosis, vol.16, pp.26-32, 2010.

D. Bluestein, L. Niu, R. T. Schoephoerster, and M. K. Dewanjee, Fluid mechanics of arterial stenosis: Relationship to the development of mural thrombus, Annals of Biomedical Engineering, vol.25, p.344, 1997.

V. V. Mclaughlin and M. D. Mcgoon, Pulmonary arterial hypertension, Circulation, vol.114, pp.1417-1431, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01969356

M. Gatzoulis, R. Alonso-gonzalez, and M. Beghetti, Pulmonary arterial hypertension in paediatric and adult patients with congenital heart disease, European Respiratory Review, vol.18, pp.154-161, 2009.

R. A. Preston, W. Jy, J. J. Jimenez, L. M. Mauro, L. L. Horstman et al., Effects of severe hypertension on endothelial and platelet microparticles, Hypertension, pp.211-217, 2003.

Y. Miyazaki, S. Nomura, T. Miyake, H. Kagawa, C. Kitada et al.,

Y. Fujimura, S. Ikeda, and . Fukuhara, High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles, Blood, vol.88, pp.3456-3464, 1996.

G. Chironi, A. Simon, B. Hugel, M. Pino, J. Gariepy et al., Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, pp.2775-2780, 2006.

C. M. Boulanger, N. Amabile, and A. Tedgui, Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease, Hypertension, vol.48, pp.180-186, 2006.

M. Staykova, D. P. Holmes, C. Read, and H. A. Stone, Mechanics of surface area regulation in cells examined with confined lipid membranes, Proceedings of the National Academy of Sciences, vol.108, pp.9084-9088, 2011.

J. Schmoranzer, G. Kreitzer, and S. M. Simon, Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge, Journal of Cell Science, p.116, 2003.

N. C. Gauthier, M. A. Fardin, P. Roca-cusachs, and M. P. Sheetz, Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading, Proceedings of the National Academy of Sciences, vol.108, pp.14467-14472, 2011.

N. Groulx, F. Boudreault, S. N. Orlov, and R. Grygorczyk, Membrane reserves and hypotonic cell swelling, The Journal of Membrane Biology, vol.214, pp.43-56, 2006.

E. Boucrot and T. Kirchhausen, Endosomal recycling controls plasma membrane area during mitosis, Proceedings of the National Academy of Sciences, vol.104, pp.7939-7944, 2007.

N. C. Gauthier, O. M. Rossier, A. Mathur, J. C. Hone, and M. P. Sheetz, Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment, Molecular Biology of the Cell, vol.20, pp.3261-3272, 2009.

A. Reddy, E. V. Caler, and N. W. Andrews, Plasma Membrane Repair Is Mediated by Ca2+-Regulated Exocytosis of Lysosomes, Cell, vol.106, pp.157-169, 2001.

A. Savina, C. M. Fader, M. T. Damiani, and M. I. Colombo, Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner, Traffic, p.6, 2005.

B. Hugel, M. C. Martínez, C. Kunzelmann, and J. Freyssinet, Membrane microparticles: two sides of the coin, Physiology, vol.20, pp.22-27, 2005.

A. J. Jimenez, P. Maiuri, J. Lafaurie-janvore, S. Divoux, M. Piel et al., ESCRT Machinery Is Required for Plasma Membrane Repair, p.343, 2014.

J. F. Nabhan, R. Hu, R. S. Oh, S. N. Cohen, and Q. Lu, Formation and release of arrestin domaincontaining protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein, Proceedings of the National Academy of Sciences, vol.109, pp.4146-4151, 2012.

H. Kalra, G. Drummen, and S. Mathivanan, Focus on Extracellular Vesicles: Introducing the Next Small Big Thing, International Journal of Molecular Sciences, vol.17, p.170, 2016.

W. Jo, D. Jeong, J. Kim, S. Cho, S. C. Jang et al., Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers, Lab on a chip, vol.14, pp.1261-1269, 2014.

J. Zhu, D. Zheng, M. Zhang, W. Yu, W. Qiu et al., Preferential Cancer Cell Self-Recognition and Tumor Self-Targeting by Coating Nanoparticles with Homotypic Cancer Cell Membranes, Nano Letters, vol.16, pp.5895-5901, 2016.

R. W. Yeo, R. C. Lai, B. Zhang, S. S. Tan, Y. Yin et al., Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery, Advanced drug delivery reviews, vol.65, pp.336-341, 2013.

A. Riches, E. Campbell, E. Borger, and S. Powis, Regulation of exosome release from mammary epithelial and breast cancer cells -a new regulatory pathway, European journal of cancer, vol.50, pp.1025-1034, 1990.

L. Alvarez-erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nature biotechnology, vol.29, pp.341-345, 2011.

L. Kordelas, V. Rebmann, A. K. Ludwig, S. Radtke, J. Ruesing et al., MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease, Leukemia, vol.28, pp.970-973, 2014.

W. Whitford, J. W. Ludlow, and J. J. Cadwell, Continuous Production of Exosomes, vol.35, 2015.

D. C. Watson, D. Bayik, A. Srivatsan, C. Bergamaschi, A. Valentin et al.,

M. Monninger, A. Sun, J. C. Morales-kastresana, B. K. Jones, X. Felber et al.,

. Pavlakis, Efficient production and enhanced tumor delivery of engineered extracellular vesicles, Biomaterials, pp.195-205, 2016.

L. Sun, H. X. Wang, X. J. Zhu, P. H. Wu, W. Q. Chen et al., Serum deprivation elevates the levels of microvesicles with different size distributions and selectively 37 enriched proteins in human myeloma cells in vitro, Acta pharmacologica Sinica, vol.35, pp.381-393, 2014.

M. Wysoczynski and M. Z. Ratajczak, Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors, International journal of cancer. Journal international du cancer, vol.125, pp.1595-1603, 2009.

H. W. King, M. Z. Michael, and J. M. Gleadle, Hypoxic enhancement of exosome release by breast cancer cells, BMC Cancer, vol.12, p.421, 2012.

S. E. Headland, H. R. Jones, A. S. Sa, M. Perretti, and L. V. Norling,

, Extracellular Microparticles using ImageStreamX Imaging Flow Cytometry, vol.4, p.5237, 2014.

H. Pick, E. L. Schmid, A. P. Tairi, E. Ilegems, R. Hovius et al., Investigating cellular signaling reactions in single attoliter vesicles, Journal of the American Chemical Society, vol.127, pp.2908-2912, 2005.

Z. Mao, R. Cartier, A. Hohl, M. Farinacci, A. Dorhoi et al., Cells as factories for humanized encapsulation, Nano Lett, vol.11, pp.2152-2156, 2011.

F. Momen-heravi, S. Bala, K. Kodys, and G. Szabo, Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to, LPS, Sci Rep, vol.5, p.9991, 2015.

J. Jiang, D. S. Woulfe, and E. T. Papoutsakis, Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells, Blood, vol.124, pp.2094-2103, 2014.

M. Piffoux, A. K. Silva, J. B. Lugagne, P. Hersen, C. Wilhelm et al., Extracellular Vesicle Production Loaded with Nanoparticles and Drugs in a Trade-off between Loading, Yield and Purity: Towards a Personalized Drug Delivery System, Advanced Biosystems, p.1, 2017.

J. Yoon, W. Jo, D. Jeong, J. Kim, H. Jeong et al., Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery, Biomaterials, pp.12-20, 2015.

W. Jo, J. Kim, J. Yoon, D. Jeong, S. Cho et al., Large-scale generation of cell-derived nanovesicles, Nanoscale, vol.6, pp.12056-12064, 2014.

S. C. Jang, O. Y. Kim, C. M. Yoon, D. Choi, T. Roh et al.,

Y. S. Kim and . Gho, Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors, ACS nano, vol.7, pp.7698-7710, 2013.

J. Gao, S. Wang, and Z. Wang, High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy, Biomaterials, pp.62-73, 2017.

C. J. Hu, L. Zhang, S. Aryal, C. Cheung, R. H. Fang et al., Erythrocyte membranecamouflaged polymeric nanoparticles as a biomimetic delivery platform, Proceedings of the National Academy of Sciences, vol.108, pp.10980-10985, 2011.

W. Gao, C. M. Hu, R. H. Fang, B. T. Luk, J. Su et al., Surface functionalization of gold nanoparticles with red blood cell membranes, Advanced Materials, vol.25, pp.3549-3553, 2013.

R. A. Meyer, J. C. Sunshine, and J. J. Green, Biomimetic particles as therapeutics, Trends in biotechnology, vol.33, pp.514-524, 2015.

N. E. Toledano-furman, Y. Lupu-haber, T. Bronshtein, L. Kaneti, N. Letko et al., Reconstructed Stem Cell Nanoghosts: A Natural Tumor Targeting Platform, Nano Letters, vol.13, pp.3248-3255, 2013.

H. Cao, Z. Dan, X. He, Z. Zhang, H. Yu et al., Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer, ACS Nano, vol.10, pp.7738-7748, 2016.

J. Gao, D. Chu, and Z. Wang, Cell membrane-formed nanovesicles for disease-targeted delivery, Journal of Controlled Release, vol.224, pp.208-216, 2016.

M. Katakowski, B. Buller, X. Zheng, Y. Lu, T. Rogers et al.,

. Chopp, Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth, Cancer letters, vol.335, pp.201-204, 2013.

S. Ohno, M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa et al.,

T. Mizutani, T. Ohgi, and . Ochiya, Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells, Molecular Therapy, vol.21, pp.185-191, 2013.

O. P. Wiklander, J. Z. Nordin, A. O'loughlin, Y. Gustafsson, G. Corso et al.,

H. Lee, Y. Sork, N. Seow, L. Heldring, C. I. Alvarez-erviti et al.,

M. J. Jungebluth, S. E. Wood, and . Andaloussi, Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting, Journal of extracellular vesicles, vol.4, p.26316, 2015.

B. Shen, N. Wu, J. Yang, and S. J. Gould, Protein targeting to exosomes/microvesicles by plasma membrane anchors, Journal of Biological Chemistry, vol.286, pp.14383-14395, 2011.

S. Ohno, M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa et al.,

T. Mizutani, T. Ohgi, N. Ochiya, M. Gotoh, and . Kuroda, Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells, Molecular therapy : the journal of the American Society of Gene Therapy, vol.21, pp.185-191, 2013.

I. S. Zeelenberg, M. Ostrowski, S. Krumeich, A. Bobrie, C. Jancic et al.,

J. B. Delcayre, B. Le-pecq, S. Combadiere, C. Amigorena, and . Thery, Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses, Cancer research, vol.68, pp.1228-1235, 2008.

Y. Tian, S. Li, J. Song, T. Ji, M. Zhu et al., A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy, Biomaterials, vol.35, pp.2383-2390, 2014.

M. E. Hung and J. N. Leonard, Stabilization of exosome-targeting peptides via engineered glycosylation, The Journal of biological chemistry, vol.290, pp.8166-8172, 2015.

A. K. Silva, R. D. Corato, T. Pellegrino, S. Chat, G. Pugliese et al.,

. Wilhelm, Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials, Nanoscale, vol.5, pp.11374-11384, 2013.

A. K. Silva, N. Luciani, F. Gazeau, K. Aubertin, S. Bonneau et al.,

. Wilhelm, Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting, Nanomedicine: Nanotechnology, Biology and Medicine, vol.11, pp.645-655, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244559

A. K. Silva, J. Kolosnjaj-tabi, S. Bonneau, I. Marangon, N. Boggetto et al.,

M. F. Clement, N. Bureau, F. Luciani, C. Gazeau, and . Wilhelm, Magnetic and photoresponsive theranosomes: translating cell-released vesicles into smart nanovectors for cancer therapy, ACS Nano, vol.7, pp.4954-4966, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01244563

N. E. Toledano-furman, Y. Lupu-haber, T. Bronshtein, L. Kaneti, N. Letko et al.,

M. Baruch and . Machluf, Reconstructed stem cell nanoghosts: a natural tumor targeting platform, Nano letters, vol.13, pp.3248-3255, 2013.

C. M. Hu, R. H. Fang, K. C. Wang, B. T. Luk, S. Thamphiwatana et al.,

C. H. Angsantikul, A. V. Wen, C. Kroll, M. Carpenter, V. Ramesh et al., Nanoparticle biointerfacing by platelet membrane cloaking, vol.526, pp.118-121, 2015.

X. Zhuang, X. Xiang, W. Grizzle, D. Sun, S. Zhang et al.,

D. Steinman, H. Miller, and . Zhang, Treatment of Brain Inflammatory Diseases by Delivering Exosome Encapsulated Anti-inflammatory Drugs From the Nasal Region to the Brain, Molecular therapy : the journal of the American Society of Gene Therapy, vol.19, pp.1769-1779, 2011.

K. Bryniarski, W. Ptak, A. Jayakumar, K. Püllmann, M. J. Caplan et al., Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity, Journal of Allergy and Clinical Immunology, vol.132, pp.170-181, 2013.

T. A. Shtam, R. A. Kovalev, E. Y. Varfolomeeva, E. M. Makarov, Y. V. Kil et al., Exosomes are natural carriers of exogenous siRNA to human cells in vitro, Cell Commun Signal, vol.11, p.1186, 2013.

E. Neumann, M. Schaefer-ridder, Y. Wang, and P. H. Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electric fields, The EMBO Journal, vol.1, pp.841-845, 1982.

S. A. Kooijmans, S. Stremersch, K. Braeckmans, S. C. De-smedt, A. Hendrix et al., Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles, Journal of controlled release : official journal of the Controlled Release Society, vol.172, pp.229-238, 2013.

M. J. Haney, N. L. Klyachko, Y. Zhao, R. Gupta, E. G. Plotnikova et al., Exosomes as drug delivery vehicles for Parkinson's disease therapy, Journal of Controlled Release, vol.207, pp.18-30, 2015.

L. Kaneti, T. Bronshtein, D. N. Malkah, I. Kovregina, K. N. Letko et al., Nanoghosts as a Novel Natural Nonviral Gene Delivery Platform Safely Targeting Multiple Cancers, Nano letters, vol.16, p.1574, 2016.

N. Vats, C. Wilhelm, P. E. Rautou, M. Poirier-quinot, C. Pechoux et al.,

F. Boulanger and . Gazeau, Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information, Nanomedicine, vol.5, pp.727-738, 2010.

A. Rank, R. Nieuwland, A. Crispin, S. Grutzner, M. Iberer et al., Clearance of platelet microparticles in vivo, vol.22, pp.111-116, 2011.

T. Smyth, K. Petrova, N. M. Payton, I. Persaud, J. S. Redzic et al.,

T. J. Anchordoquy, Surface functionalization of exosomes using click chemistry, Bioconjugate chemistry, vol.25, pp.1777-1784, 2014.

M. Wang, S. Altinoglu, Y. S. Takeda, and Q. Xu, Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery, PloS one, vol.10, p.141860, 2015.

Y. T. Sato, K. Umezaki, S. Sawada, S. A. Mukai, Y. Sasaki et al., Engineering hybrid exosomes by membrane fusion with liposomes, Sci Rep, vol.6, p.21933, 2016.

S. Kooijmans, L. Fliervoet, R. Van-der-meel, M. Fens, H. Heijnen et al., PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time, Journal of Controlled Release, vol.224, pp.77-85, 2016.

S. Kooijmans, J. Gitz-francois, R. M. Schiffelers, and P. Vader, Recombinant phosphatidylserinebinding nanobodies for targeting of extracellular vesicles to tumor cells: a plug-and-play approach, Nanoscale, vol.10, pp.2413-2426, 2018.

S. A. Kooijmans, C. G. Aleza, S. R. Roffler, W. W. Van-solinge, P. Vader et al., Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting, Journal of extracellular vesicles, vol.5, p.31053, 2016.

R. Wang, P. S. Billone, and W. M. Mullett, Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials, Journal of Nanomaterials, p.1, 2013.

J. W. Yoo, D. J. Irvine, D. E. Discher, and S. Mitragotri, Bio-inspired, bioengineered and biomimetic drug delivery carriers, Nature reviews. Drug discovery, vol.10, pp.521-535, 2011.

I. Tatischeff and A. Annette, A new biological strategy for drug delivery: eucaryotic cell-derived nanovesicles, J Biomater Nanobiotechnol, vol.2, pp.494-499, 2011.

J. G. Van-den-boorn, M. Schlee, C. Coch, and G. Hartmann, SiRNA delivery with exosome nanoparticles, Nat Biotechnol, vol.29, pp.325-326, 2011.

E. V. Batrakova and M. S. Kim, Using exosomes, naturally-equipped nanocarriers, for drug delivery, Journal of controlled release : official journal of the Controlled Release Society, p.219

S. Krishnamurthy, M. Gnanasammandhan, C. Xie, K. Huang, M. Cui et al., Monocyte cell membrane-derived nanoghosts for targeted cancer therapy, Nanoscale, vol.8, pp.6981-6985, 2016.

K. Aubertin, A. K. Silva, N. Luciani, A. Espinosa, A. Djemat et al.,

C. Brude and . Wilhelm, Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy, Scientific Reports, vol.6, p.35376, 2016.

R. Bose, S. Kumar, Y. Zeng, R. Afjei, E. Robinson et al., Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for Cancer-Specific Delivery of AntimiR-21 and Imaging Agents, ACS nano, vol.12, pp.10817-10832, 2018.

T. Lener, M. Gimona, L. Aigner, V. Börger, E. Buzas et al., Applying extracellular vesicles based therapeutics in clinical trials-an ISEV position paper, Journal of extracellular vesicles, vol.4, p.31, 2015.