S. Papa, P. L. Martino, G. Capitanio, A. Gaballo, D. De-rasmo et al., The oxidative phosphorylation system in mammalian mitochondria, Adv. Exp. Med. Biol, vol.942, pp.3-37, 2012.

P. Stenmark and P. Nordlund, A prokaryotic alternative oxidase present in the bacterium Novosphingobium aromaticivorans, FEBS Lett, vol.552, pp.189-192, 2003.

A. E. Mcdonald, S. Amirsadeghi, and G. C. Vanlerberghe, Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase, Plant Mol. Biol, vol.53, pp.865-876, 2003.

M. Chaudhuri, R. D. Ott, and G. C. Hill, Trypanosome alternative oxidase: from molecule to function, Trends Parasitol, vol.22, pp.484-491, 2006.

A. M. Melo, T. M. Bandeiras, and M. Teixeira, New insights into type II NAD(P)H:quinone oxidoreductases, Microbiol, Mol. Biol. Rev, vol.68, pp.603-616, 2004.

F. R. Opperdoes, Compartmentation of carbohydrate metabolism in trypanosomes, Annu. Rev. Microbiol, vol.41, pp.127-151, 1987.

B. S. Brown, T. B. Chi, and N. Williams, The Trypanosoma brucei mitochondrial ATP synthase is developmentally regulated at the level of transcript stability, Mol. Biochem. Parasitol, vol.115, pp.177-187, 2001.

A. G. Tielens and J. J. Van-hellemond, Surprising variety in energy metabolism within Trypanosomatidae, Trends Parasitol, vol.25, pp.482-490, 2009.

K. Gunasekera, D. Wüthrich, S. Braga-lagache, M. Heller, and T. Ochsenreiter, Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry, BMC Genomics, vol.13, p.556, 2012.

J. W. Priest and S. L. Hajduk, Developmental regulation of mitochondrial biogenesis in Trypanosoma brucei, J. Bioenerg. Biomembr, vol.26, pp.179-192, 1994.

E. J. Bienen, M. Saric, G. Pollakis, R. W. Grady, and A. B. Clarkson, Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms, Mol. Biochem. Parasitol, vol.45, pp.185-192, 1991.

S. Surve, M. Heestand, B. Panicucci, A. Schnaufer, and M. Parsons, Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms, Eukaryot. Cell, vol.11, pp.183-193, 2012.

A. Roldán, M. Comini, M. Crispo, and R. L. Krauth-siegel, Lipoamide dehydrogenase is essential for both bloodstream and procyclic Trypanosoma brucei, Mol. Microbiol, vol.81, pp.623-639, 2011.

M. Mazet, P. Morand, M. Biran, G. Bouyssou, P. Courtois et al., Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability, PLoS Negl. Trop. Dis, vol.7, p.2587, 2013.

J. Fang and D. S. Beattie, Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization, Biochemistry, vol.41, pp.3065-3072, 2002.

J. Fang and D. S. Beattie, Identification of a gene encoding a 54 kDa alternative NADH dehydrogenase in Trypanosoma brucei, Mol. Biochem. Parasitol, vol.127, pp.73-77, 2003.

Z. Verner, I. Skodová, S. Poláková, V. Duri?ová-benkovi?ová, A. Horváth et al., Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei, Parasitology, vol.140, pp.328-337, 2013.

M. D. Urbaniak, M. L. Guther, and M. A. Ferguson, Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages, PLoS One, vol.7, p.36619, 2012.

F. Butter, F. Bucerius, M. Michel, Z. Cicova, M. Mann et al., Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery, Mol. Cell. Proteomics, vol.12, pp.172-179, 2013.

E. Wirtz, S. Leal, C. Ochatt, and G. A. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Mol. Biochem. Parasitol, vol.99, pp.89-101, 1999.

Y. Millerioux, C. Ebikeme, M. Biran, P. Morand, G. Bouyssou et al., The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control, Mol. Microbiol, vol.90, pp.114-129, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01101378

S. H. Lee, J. L. Stephens, and P. T. Englund, A fatty-acid synthesis mechanism specialized for parasitism, Nat. Rev. Microbiol, vol.5, pp.287-297, 2007.

S. O. Oyola, K. J. Evans, T. K. Smith, B. A. Smith, J. D. Hilley et al., Functional analysis of Leishmania cyclopropane fatty acid synthetase, PLoS One, vol.7, p.51300, 2012.

X. Zhang, J. Cui, D. Nilsson, K. Gunasekera, A. Chanfon et al., The Trypanosoma brucei MitoCarta and its regulation and splicing pattern during development, Nucleic Acids Res, vol.38, pp.7378-7387, 2010.

H. Kim, Z. Li, C. Boothroyd, and G. A. Cross, Strategies to construct null and conditional null Trypanosoma brucei mutants using Cre-recombinase and loxP, Mol. Biochem. Parasitol, vol.191, pp.16-19, 2013.

N. Lander, Z. Li, S. Niyogi, and R. Docampo, CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment, MBio, vol.6, p.1012, 2015.

W. Zhang and G. Matlashewski, CRISPR-Cas9-mediated genome editing in Leishmania donovani, MBio, vol.6, p.861, 2015.

L. Sollelis, M. Ghorbal, C. R. Macpherson, R. M. Martins, N. Kuk et al., First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites, Cell. Microbiol, vol.17, pp.1405-1412, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01992713