P. Anbazhagan, R. K. Harijan, T. R. Kiema, N. Janardan, M. R. Murthy et al., Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis, Tuberculosis (Edinb), vol.94, pp.405-412, 2014.

N. Janardan, R. K. Harijan, R. K. Wierenga, and M. R. Murthy, Crystal structure of a monomeric thiolase-like protein type 1 (TLP1) from Mycobacterium smegmatis, PLoS One, vol.7, p.41894, 2012.

A. M. Haapalainen, G. Merilainen, and R. K. Wierenga, The thiolase superfamily: condensing enzymes with diverse reaction specificities, Trends Biochem Sci, vol.31, pp.64-71, 2006.

J. E. Cronan, The chain-flipping mechanism of ACP (acyl carrier protein)-dependent enzymes appears universal, Biochem J, vol.460, pp.157-163, 2014.

J. R. Whicher, S. Dutta, D. A. Hansen, W. A. Hale, J. A. Chemler et al., Structural rearrangements of a polyketide synthase module during its catalytic cycle, Nature, vol.510, pp.560-564, 2014.

N. Shafqat, A. Turnbull, J. Zschocke, U. Oppermann, and W. W. Yue, Crystal structures of human HMG-CoA synthase isoforms provide insights into inherited ketogenesis disorders and inhibitor design, J Mol Biol, vol.398, pp.497-506, 2010.

H. M. Miziorko, Enzymes of the mevalonate pathway of isoprenoid biosynthesis, Arch Biochem Biophys, vol.505, pp.131-143, 2011.

C. Jiang, S. Y. Kim, and D. Y. Suh, Divergent evolution of the thiolase superfamily and chalcone synthase family, Mol Phylogenet Evol, vol.49, pp.691-701, 2008.

P. Kursula, H. Sikkila, T. Fukao, N. Kondo, and R. K. Wierenga, High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I, J Mol Biol, vol.347, pp.189-201, 2005.

T. R. Kiema, R. K. Harijan, M. Strozyk, T. Fukao, S. E. Alexson et al., The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities, Acta Crystallogr D Biol Crystallogr, vol.70, pp.3212-3225, 2014.

A. M. Haapalainen, G. Merilainen, P. L. Pirila, N. Kondo, T. Fukao et al., Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase: the importance of potassium and chloride ions for its structure and function, Biochemistry, vol.46, pp.4305-4321, 2007.

M. Mathieu, Y. Modis, J. P. Zeelen, C. K. Engel, R. A. Abagyan et al., The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism, J Mol Biol, vol.273, pp.714-728, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02262466

S. Oeljeklaus, K. Fischer, and G. B. , Glyoxysomal acetoacetyl-CoA thiolase and 3-oxoacyl-CoA thiolase from sunflower cotyledons, Planta, vol.214, pp.597-607, 2002.

R. Venkatesan and R. K. Wierenga, Structure of mycobacterial betaoxidation trifunctional enzyme reveals its altered assembly and putative substrate channeling pathway, ACS Chem Biol, vol.8, pp.1063-1073, 2013.

M. Ishikawa, D. Tsuchiya, T. Oyama, Y. Tsunaka, and K. Morikawa, Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex, Embo J, vol.23, pp.2745-2754, 2004.

R. K. Harijan, T. R. Kiema, M. P. Karjalainen, N. Janardan, M. R. Murthy et al., Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop, Biochem J, vol.455, pp.119-130, 2013.

G. Merilainen, V. Poikela, P. Kursula, and R. K. Wierenga, The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation, Biochemistry, vol.48, pp.11011-11025, 2009.

, World Health OrganizationResearch priorities for Chagas disease, human African trypanosomiasis and leishmaniasis, World Health Organ Tech Rep Ser, pp.1-100, 2012.

A. D. Uttaro, Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids, Mol Biochem Parasitol, vol.196, pp.61-70, 2014.

S. T. De-macedo-silva, W. De-souza, and J. C. Rodrigues, Sterol Biosynthesis Pathway as an Alternative for the Anti-Protozoan Parasite Chemotherapy, Curr Med Chem, vol.22, pp.2186-2198, 2015.

R. Brun and . Schonenberger, Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop, vol.36, pp.289-292, 1979.

V. Coustou, M. Biran, S. Besteiro, L. Riviere, T. Baltz et al., Fumarate is an essential intermediary metabolite produced by the procyclic Trypanosoma brucei, J Biol Chem, vol.281, pp.26832-26846, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00215929

F. Bringaud, D. Baltz, and T. Baltz, Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase, Proc Natl Acad Sci U S A, vol.95, pp.7963-7968, 1998.

E. Wirtz, S. Leal, C. Ochatt, and G. A. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominantnegative genetics in Trypanosoma brucei, Mol Biochem Parasitol, vol.99, pp.89-101, 1999.

Y. Millerioux, C. Ebikeme, M. Biran, P. Morand, G. Bouyssou et al., The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control, Mol Microbiol, vol.90, pp.114-129, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01101378

K. Deramchia, P. Morand, M. Biran, Y. Millerioux, M. Mazet et al., Contribution of pyruvate phosphate dikinase in the maintenance of the glycosomal ATP/ADP balance in the Trypanosoma brucei procyclic form, J Biol Chem, vol.289, pp.17365-17378, 2014.

P. W. Riddles, R. L. Blakeley, and B. Zerner, Reassessment of Ellman's reagent, Methods Enzymol, vol.91, pp.49-60, 1983.

H. Staack, J. F. Binstock, and H. Schulz, Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolases from pig heart and Escherichia coli, J Biol Chem, vol.253, pp.1827-1831, 1978.

J. P. Zeelen, J. K. Hiltunen, T. A. Ceska, and R. K. Wierenga, Crystallization experiments with 2-enoyl-CoA hydratase, using an automated 'fastscreening' crystallization protocol, Acta Crystallogr D Biol Crystallogr, vol.50, pp.443-447, 1994.

P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr D Biol Crystallogr, vol.66, pp.213-221, 2010.

W. Kabsch and . Xds, Acta Crystallogr D Biol Crystallogr, vol.66, pp.125-132, 2010.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, Acta Crystallogr D Biol Crystallogr, vol.67, pp.235-242, 2011.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J Appl Crystallogr, vol.40, pp.658-674, 2007.

K. Cowtan, Completion of autobuilt protein models using a database of protein fragments, Acta Crystallogr D Biol Crystallogr, vol.68, pp.328-335, 2012.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr D Biol Crystallogr, vol.66, pp.486-501, 2010.

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallogr D Biol Crystallogr, vol.53, pp.240-255, 1997.

Y. Modis and R. K. Wierenga, Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase, J Mol Biol, vol.297, pp.1171-1182, 2000.

P. Kursula, J. Ojala, A. M. Lambeir, and R. K. Wierenga, The catalytic cycle of biosynthetic thiolase: a conformational journey of an acetyl group through four binding modes and two oxyanion holes, Biochemistry, vol.41, pp.15543-15556, 2002.

E. Krissinel and K. Henrick, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Crystallogr D Biol Crystallogr, vol.60, pp.2256-2268, 2004.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr D Biol Crystallogr, vol.66, pp.12-21, 2010.

E. Krissinel and K. Henrick, Inference of macromolecular assemblies from crystalline state, J Mol Biol, vol.372, pp.774-797, 2007.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol Evol, vol.28, pp.2731-2739, 2011.

M. Mazet, R. K. Harijan, T. R. Kiema, A. M. Haapalainen, P. Morand et al., The characterization and evolutionary relationships of a trypanosomal thiolase, Int J Parasitol, vol.41, pp.1273-1283, 2011.

L. Riviere, S. W. Van-weelden, P. Glass, P. Vegh, V. Coustou et al., Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism, J Biol Chem, vol.279, pp.45337-45346, 2004.

Y. Millerioux, P. Morand, M. Biran, M. Mazet, P. Moreau et al., ATP synthesis-coupled and -uncoupled acetate production from acetyl-CoA by mitochondrial acetate:succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma, J Biol Chem, vol.287, pp.17186-17197, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268341

D. S. Froese, F. Forouhar, T. H. Tran, M. Vollmar, Y. S. Kim et al., Crystal structures of malonyl-coenzyme A decarboxylase provide insights into its catalytic mechanism and disease-causing mutations, Structure, vol.21, pp.1182-1192, 2013.

G. Bunkoczi, S. Misquitta, X. Wu, W. H. Lee, A. Rojkova et al., Structural basis for different specificities of acyltransferases associated with the human cytosolic and mitochondrial fatty acid synthases, Chem Biol, vol.16, pp.667-675, 2009.

V. D. Antonenkov, P. P. Van-veldhoven, E. Waelkens, and G. P. Mannaerts, Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates, J Biol Chem, vol.272, pp.26023-26031, 1997.

E. J. Corey and R. A. Sneen, Stereoelectronic Control in Enolization-Ketonization Reactions1, J Am Chem Soc, vol.78, pp.6269-6278, 1956.

A. K. Panigrahi, Y. Ogata, A. Zikova, A. Anupama, R. A. Dalley et al., A comprehensive analysis of Trypanosoma brucei mitochondrial proteome, Proteomics, vol.9, pp.434-450, 2009.

C. Oefner, H. Schulz, D. 'arcy, A. Dale, and G. E. , Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography, Acta Crystallogr D Biol Crystallogr, vol.62, pp.613-618, 2006.

L. Zhang, W. Liu, J. Xiao, T. Hu, J. Chen et al., Malonyl-CoA: acyl carrier protein transacylase from Helicobacter pylori: Crystal structure and its interaction with acyl carrier protein, Protein Sci, vol.16, pp.1184-1192, 2007.

L. Serre, E. C. Verbree, Z. Dauter, A. R. Stuitje, and Z. S. Derewenda, The Escherichia coli malonyl-CoA:acyl carrier protein transacylase at 1.5-A resolution. Crystal structure of a fatty acid synthase component, J Biol Chem, vol.270, pp.12961-12964, 1995.

Y. Liu, Y. Feng, Y. Wang, X. Li, X. Cao et al., Structural and biochemical characterization of MCAT from photosynthetic microorganism Synechocystis sp. PCC 6803 reveal its stepwise catalytic mechanism, Biochem Biophys Res Commun, vol.457, pp.398-403, 2015.

M. C. Franklin, J. Cheung, M. J. Rudolph, F. Burshteyn, M. Cassidy et al., Structural genomics for drug design against the pathogen Coxiella burnetii, Proteins, vol.83, pp.2124-2136, 2015.

L. Zhang, A. K. Joshi, and S. Smith, Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase. Malonyl transferase and acyl carrier protein, J Biol Chem, vol.278, pp.40067-40074, 2003.

V. S. Rangan, A. Witkowski, and S. Smith, Isolation of a functional transferase component from the rat fatty acid synthase by limited trypsinization of the subunit monomer. Formation of a stable functional complex between transferase and acyl carrier protein domains, J Biol Chem, vol.266, pp.19180-19185, 1991.

T. Bretschneider, G. Zocher, M. Unger, K. Scherlach, T. Stehle et al., A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis, Nat Chem Biol, vol.8, pp.154-161, 2011.

J. L. Stephens, S. H. Lee, K. S. Paul, and P. T. Englund, Mitochondrial fatty acid synthesis in Trypanosoma brucei, J Biol Chem, vol.282, pp.4427-4436, 2007.

S. H. Lee, J. L. Stephens, and P. T. Englund, A fatty-acid synthesis mechanism specialized for parasitism, Nat Rev Microbiol, vol.5, pp.287-297, 2007.