D. A. Arber, A. Orazi, R. Hasserjian, J. Thiele, M. J. Borowitz et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia, Blood, vol.127, pp.2391-2405, 2016.

C. James, V. Ugo, J. Le-couédic, J. Staerk, F. Delhommeau et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, vol.434, pp.1144-1148, 2005.

R. Kralovics, F. Passamonti, A. S. Buser, S. Teo, R. Tiedt et al., A gain-of-function mutation of JAK2 in myeloproliferative disorders, N. Engl. J. Med, vol.352, pp.1779-1790, 2005.

E. J. Baxter, L. M. Scott, P. J. Campbell, C. East, N. Fourouclas et al., Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders, Lancet, vol.365, pp.1054-1061, 2005.

R. L. Levine, M. Wadleigh, J. Cools, B. L. Ebert, G. Wernig et al., Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis, Cancer Cell, vol.7, pp.387-397, 2005.

Y. Pikman, B. H. Lee, T. Mercher, E. Mcdowell, B. L. Ebert et al., MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia, PLoS Med, 2006.

T. Klampfl, H. Gisslinger, A. S. Harutyunyan, H. Nivarthi, E. Rumi et al., Somatic mutations of calreticulin in myeloproliferative neoplasms, N. Engl. J. Med, vol.369, pp.2379-2390, 2013.

J. Nangalia, C. E. Massie, E. J. Baxter, F. L. Nice, G. Gundem et al., Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2, N. Engl. J. Med, vol.369, pp.2391-2405, 2013.

M. Michalak, J. Groenendyk, E. Szabo, L. I. Gold, and M. Opas, Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum, Biochem. J, vol.417, p.651, 2009.

D. B. Williams, Beyond lectins: The calnexin/calreticulin chaperone system of the endoplasmic reticulum, J. Cell Sci, vol.119, pp.615-623, 2006.

M. Michalak, E. F. Corbett, N. Mesaeli, K. Nakamura, and M. Opas, Calreticulin: One protein, one gene, many functions, Biochem. J, vol.344, pp.281-292, 1999.

L. Lamriben, J. B. Graham, B. M. Adams, and D. N. Hebert, N-Glycan-based ER molecular chaperone and protein quality control system: The Calnexin binding cycle, Traffic Cph. Den, vol.17, pp.308-326, 2016.

S. S. Vembar and J. L. Brodsky, One step at a time: Endoplasmic reticulum-associated degradation, Nat. Rev. Mol. Cell Biol, vol.9, pp.944-957, 2008.

M. Schröder and R. J. Kaufman, The mammalian unfolded protein response, Annu. Rev. Biochem, vol.74, pp.739-789, 2005.

C. Hetz, E. Chevet, and S. A. Oakes, Proteostasis control by the unfolded protein response, Nat. Cell Biol, vol.17, pp.829-838, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01175531

M. Wang and R. J. Kaufman, The impact of the endoplasmic reticulum protein-folding environment on cancer development, Nat. Rev. Cancer, vol.14, pp.581-597, 2014.

A. Higa, S. Taouji, S. Lhomond, D. Jensen, M. E. Fernandez-zapico et al., Endoplasmic reticulum stress-activated transcription factor ATF6? requires the disulfide isomerase PDIA5 to modulate chemoresistance, Mol. Cell. Biol, vol.34, pp.1839-1849, 2014.

I. Chachoua, C. Pecquet, M. El-khoury, H. Nivarthi, R. Albu et al., Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants, Blood, vol.127, pp.1325-1335, 2016.

M. Araki, Y. Yang, N. Masubuchi, Y. Hironaka, H. Takei et al., Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms, Blood, vol.127, pp.1307-1316, 2016.

L. Han, C. Schubert, J. Köhler, M. Schemionek, S. Isfort et al., Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion, J. Hematol. Oncol, vol.9, p.45, 2016.

K. Kollmann, W. Warsch, C. Gonzalez-arias, F. L. Nice, E. Avezov et al., A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation, Leukemia, vol.31, pp.934-944, 2017.

M. R. Garbati, C. A. Welgan, S. H. Landefeld, L. F. Newell, A. Agarwal et al., Mutant calreticulin-expressing cells induce monocyte hyperreactivity through a paracrine mechanism, Am. J. Hematol, vol.91, pp.211-219, 2016.

E. Chevet, J. Smirle, P. H. Cameron, D. Y. Thomas, and J. J. Bergeron, Calnexin phosphorylation: Linking cytoplasmic signalling to endoplasmic reticulum lumenal functions, Semin. Cell Dev. Biol, vol.21, pp.486-490, 2010.

P. H. Cameron, E. Chevet, O. Pluquet, D. Y. Thomas, and J. J. Bergeron, Calnexin phosphorylation attenuates the release of partially misfolded alpha1-antitrypsin to the secretory pathway, J. Biol. Chem, vol.284, pp.34570-34579, 2009.

C. Norez, C. Vandebrouck, J. Bertrand, S. Noel, E. Durieu et al., Roscovitine is a proteostasis regulator that corrects the trafficking defect of F508del-CFTR by a CDK-independent mechanism, Br. J. Pharmacol, vol.171, pp.4831-4849, 2014.

R. Rampal, F. Al-shahrour, O. Abdel-wahab, J. Patel, J. Brunel et al., Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis, Blood, vol.123, pp.123-133, 2014.

R. T. Timms, S. A. Menzies, I. A. Tchasovnikarova, L. C. Christensen, J. C. Williamson et al., Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens, Nat. Commun, 2016.

W. W. Lau, R. Hannah, A. R. Green, and B. Göttgens, The JAK-STAT signaling pathway is differentially activated in CALR-positive compared with JAK2V617F-positive ET patients, Blood, vol.125, pp.1679-1681, 2015.

A. S. Nam, K. Kim, R. Chaligne, F. Izzo, C. Ang et al., High throughput droplet single-cell Genotyping of Transcriptomes (GoT) reveals the cell identity dependency of the impact of somatic mutations, p.444687, 2018.

S. Salati, E. Genovese, C. Carretta, R. Zini, N. Bartalucci et al., Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants, Sci. Rep, vol.9, pp.1-14, 2019.

G. Barosi, E. Gattoni, P. Guglielmelli, R. Campanelli, F. Facchetti et al., Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and biological effects of proteasome inhibition, Am. J. Hematol, vol.85, pp.616-619, 2010.

R. A. Mesa, S. Verstovsek, C. Rivera, A. Pardanani, K. Hussein et al., Bortezomib therapy in myelofibrosis: A phase II clinical trial, Leukemia, vol.22, pp.1636-1638, 2008.

J. J. Lopez, A. Palazzo, C. Chaabane, L. Albarran, E. Polidano et al., Crucial role for endoplasmic reticulum stress during megakaryocyte maturation, Arterioscler. Thromb. Vasc. Biol, vol.33, pp.2750-2758, 2013.

N. Arshad and P. Cresswell, Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I, J. Biol. Chem, vol.293, pp.9555-9569, 2018.

C. Pecquet, I. Chachoua, A. Roy, T. Balligand, G. Vertenoeil et al., Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants, Blood, vol.133, pp.2669-2681, 2019.

D. Sollazzo, D. Forte, N. Polverelli, M. Perricone, M. Romano et al., Circulating calreticulin is increased in myelofibrosis: Correlation with interleukin-6 plasma levels, bone marrow fibrosis, and splenomegaly, Mediators Inflamm, vol.5860657, 2016.

E. Fujita, Y. Kouroku, A. Isoai, H. Kumagai, A. Misutani et al., Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: Ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II), Hum. Mol. Genet, vol.16, pp.618-629, 2007.

H. Nivarthi, D. Chen, C. Cleary, B. Kubesova, R. Jäger et al., Thrombopoietin receptor is required for the oncogenic function of CALR mutants, Leukemia, vol.30, pp.1759-1763, 2016.

S. M. Rizvi, L. Mancino, V. Thammavongsa, R. L. Cantley, and M. Raghavan, A polypeptide binding conformation of calreticulin is induced by heat shock, calcium depletion, or by deletion of the C-terminal acidic region, Mol. Cell, vol.15, pp.913-923, 2004.

S. Elf, N. S. Abdelfattah, A. J. Baral, D. Beeson, J. F. Rivera et al., Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN, Blood, vol.131, pp.782-786, 2018.

R. Bernasconi, C. Galli, V. Calanca, T. Nakajima, and M. Molinari, Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates, J. Cell Biol, vol.188, pp.223-235, 2010.

S. Ninagawa, T. Okada, Y. Sumitomo, Y. Kamiya, K. Kato et al., EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step, J. Cell Biol, vol.206, pp.347-356, 2014.

H. Tang, C. Huang, Y. Zhuang, J. C. Christianson, and X. Chen, EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog, PLoS ONE, vol.9, 2014.

Y. Okuda-shimizu and L. M. Hendershot, Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp, Mol. Cell, vol.28, pp.544-554, 2007.

E. Pronier, P. Cifani, T. R. Merlinsky, K. B. Berman, A. V. Somasundara et al., Targeting the CALR interactome in myeloproliferative neoplasms, JCI Insight, vol.3, 2018.

B. Lee, M. J. Lee, S. Park, D. Oh, S. Elsasser et al., Enhancement of proteasome activity by a small-molecule inhibitor of USP14, Nature, vol.467, pp.179-184, 2010.

Y. Leestemaker, A. De-jong, K. F. Witting, R. Penning, K. Schuurman et al., Proteasome activation by small molecules, Cell Chem. Biol, vol.24, pp.725-736, 2017.

A. Papaioannou, A. Higa, G. Jégou, F. Jouan, R. Pineau et al., Alterations of EDEM1 functions enhance ATF6 pro-survival signaling, FEBS J, vol.285, pp.4146-4164, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01940302

O. Mansier, M. Migeon, A. Saint-lézer, C. James, E. Verger et al., Quantification of the mutant CALR allelic burden by digital PCR: Application to minimal residual disease evaluation after bone marrow transplantation, J. Mol. Diagn, vol.18, pp.68-74, 2016.

D. Fessart, C. Domblides, T. Avril, L. A. Eriksson, H. Begueret et al.,