E. Donnelly, Methods for assessing bone quality: a review, Clin. Orthop. Relat. Res, vol.469, pp.2128-2138, 2011.

S. J. Schambach, S. Bag, L. Schilling, C. Groden, and M. A. Brockmann, Application of micro-CT in small animal imaging, Methods, vol.50, pp.2-13, 2010.

J. Fei, F. Peyrin, M. Luc, L. Vico, and M. H. Lafage-proust, Imaging and Quantitative Assessment of Long Bone Vascularization in the Adult Rat using Microcomputed Tomography, Anat. Rec, vol.293, pp.215-224, 2010.

S. Schlaubitz, Pullulan/dextran/nHA macroporous composite beads for bone repair in a femoral condyle defect in rats, PloS ONE, vol.9, p.110251, 2014.

L. Cartwright, Dynamic contrast-enhanced MRI to quantify VEGF-enhanced tissue-engineered bladder graft neovascularization: Pilot study, J. Biomed. Mater. Res, vol.77, pp.390-395, 2006.

H. L. Cheng, J. Chen, P. S. Babyn, and W. A. Farhat, Dynamic Gd-DTPA Enhanced MRI as a Surrogate Marker of Angiogenesis in Tissue-Engineered Bladder Constructs: A Feasibility Study in Rabbits, J. Magn. Reson. Imaging, vol.21, pp.415-423, 2005.

, Scientific RepoRts |, vol.7, p.6100

H. L. Cheng, C. Wallis, Z. Shou, and W. A. Farhat, Quantifying Angiogenesis in VEGF-Enhanced Tissue-Engineered Bladder Constructs by Dynamic Contrast-Enhanced MRI using Contrast Agents of Different Molecular Weights, J. Magn. Reson. Imaging, vol.25, pp.137-145, 2007.

N. Ehrhart, S. Kraft, D. Conover, R. N. Rosier, and E. M. Schwarz, Quantification of Massive Allograft Healing with Dynamic Contrast Enhanced-MRI and Cone Beam-CT. A Pilot Study, Clin. Orthop. Relat. Res, vol.466, pp.1897-1904, 2008.

B. G. Santoni, N. Ehrhart, R. Betancourt-benitez, C. A. Beck, and E. M. Schwarz, Quantifying Massive Allograft Healing of the Canine Femur In Vivo and Ex Vivo. A Pilot Study, Clin. Orthop. Relat. Res, vol.470, pp.2478-2487, 2012.

J. P. Beier, Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model, J. Tissue Eng. Regen. Med, vol.4, pp.216-223, 2010.

A. Weigand, Acceleration of Vascularized Bone Tissue-Engineered Constructs in a Large Animal Model Combining Intrinsic and Extrinsic Vascularization, Tissue Eng. Part A, vol.21, pp.1680-1694, 2015.

M. Di-girolamo, M. Mattei, A. Signore, and F. Romana-grippaudo, MRI in the evaluation of facial dermal fillers in normal and complicated cases, Eur. Radiol, vol.25, pp.1431-1442, 2015.

J. C. Fricain, A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering, Biomaterials, vol.34, pp.2947-2959, 2013.

C. E. Luyt, Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia, J. Pharmacol. Exp. Ther, vol.305, pp.24-30, 2003.

A. C. Lake, Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1, J. Biol. Chem, vol.281, pp.37844-37852, 2006.

A. Purnama, Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Deliv. Transl. Res, vol.5, pp.187-197, 2015.

E. J. Ribot, Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively, PLoS ONE, vol.10, issue.10, p.139249, 2015.

A. Udagawa, Micro-CT observation of angiogenesis in bone regeneration, Clin. Oral Impl. Res, vol.24, pp.787-792, 2013.

J. G. Whisenant, Evaluating treatment response using DW-MRI and DCE-MRI in trastuzumab responsive and resistant HER2-overexpressing human breast cancer xenografts, Trans. Oncol, vol.7, issue.6, pp.768-779, 2014.

A. T. Perles-barbacaru, F. Berger, and H. Lahrech, Quantitative Rapid Steady State T1 Magnetic Resonance Imaging for Cerebral Blood Volume Mapping in Mice: Lengthened Measurement Time Window with Intraperitoneal Gd-DOTA Injection, Magn. Reson. Med, vol.69, pp.1451-1456, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00726955

M. Beaumont, Monitoring angiogenesis in soft-tissue engineered constructs for calvarium bone regeneration: an in vivo longitudinal DCE-MRI study, NMR Biomed, vol.23, pp.48-55, 2010.

R. A. Carano and E. H. Filvaroff, Angiogenesis and bone repair, Drug Discov. Today, vol.8, pp.980-989, 2003.

D. W. Hutmacher, J. T. Schantz, C. X. Lam, K. C. Tan, and T. C. Lim, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J. Tissue Eng. Regen. Med, vol.1, pp.245-260, 2007.

E. I. Chang, Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds, Faseb J, 2008.

M. Grellier, The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect, Biomaterials, vol.30, pp.3271-3278, 2009.

Y. Liu, L. Enggist, A. F. Kuffer, D. Buser, and E. B. Hunziker, The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration, Biomaterials, vol.28, pp.2677-2686, 2007.

R. Gutwald, Influence of rhBMP-2 on bone formation and osseointegration in different implant systems after sinus-floor elevation. An in vivo study on sheep, J Craniomaxillofac. Surg, vol.38, pp.571-579, 2010.

Y. C. Huang, D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney, Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration, J. Bone Miner. Res, vol.20, pp.848-857, 2005.

D. C. Beachler, Bone Morphogenetic Protein Use and Cancer Risk Among Patients Undergoing Lumbar Arthrodesis: A Case-Cohort Study Using the SEER-Medicare Database, J. Bone Joint Surg. Am, vol.98, pp.1064-1072, 2016.

B. J. Von-tigerstrom, The challenges of regulating stem cell-based products, Trends Biotechnol, vol.26, pp.653-658, 2008.

S. Ziane, A thermosensitive low molecular weight hydrogel as scaffold for tissue engineering, Eur. Cell. Mater, vol.23, pp.147-60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00817266

L. Rami, Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering, J. Biomed. Mater. Res. Part A, vol.102, pp.3666-3676, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01089661

S. Miraux, P. Massot, E. J. Ribot, J. M. Franconi, and E. Thiaudiere, 3D TrueFISP Imaging of Mouse Brain at 4.7T and 9.4T, J. Magn. Reson. Imaging, vol.28, pp.497-503, 2008.

H. Oliveira, The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment, Acta Biomater, vol.29, pp.435-445, 2016.