M. Z. Ahmed, P. J. De-barro, S. X. Ren, J. M. Greeff, and B. L. Qiu, Evidence for Horizontal Transmission of Secondary Endosymbionts in the Bemisia tabaci Cryptic Species Complex, PLoS ONE, vol.8, issue.1, p.e53084, 2013.

W. Arthofer, M. Riegler, D. N. Avtzis, and C. Stauffer, Evidence for low-titre infections in insect symbiosis: Wolbachia in the bark beetle Pityogenes chalcographus (Coleoptera, Scolytinae), Environmental Microbiology, vol.11, issue.8, pp.1923-1933, 2009.

A. A. Augustinos, D. Santos-garcia, E. Dionyssopoulou, M. Moreira, A. Papapanagiotou et al., Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled?, PLoS ONE, vol.6, issue.12, p.e28695, 2011.

D. Ayala, O. Akone-ella, N. Rahola, P. Kengne, M. F. Ngangue et al., Natural Wolbachia infections are common in the major malaria vectors in Central Africa, Evolutionary Applications. Dryad digital, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02359156

F. Baldini, J. Rougé, K. Kreppel, G. Mkandawile, S. A. Mapua et al., First report of natural Wolbachia infection in the malaria mosquito Anopheles arabiensis in Tanzania, Parasites & Vectors, vol.11, issue.1, p.635, 2018.

F. Baldini, N. Segata, J. Pompon, P. Marcenac, W. Robert-shaw et al., Evidence of natural Wolbachia infections in field populations of Anopheles gambiae, Nature Communications, vol.5, issue.1, p.3985, 2014.

L. Baldo, J. C. Dunning-hotopp, K. A. Jolley, S. R. Bordenstein, S. A. Biber et al., Multilocus Sequence Typing System for the Endosymbiont Wolbachia pipientis, Applied and Environmental Microbiology, vol.72, issue.11, pp.7098-7110, 2006.

S. Bhatt, D. J. Weiss, E. Cameron, D. Bisanzio, B. Mappin et al., The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015, Nature, vol.526, issue.7572, pp.207-211, 2015.

G. Bian, D. Joshi, Y. Dong, P. Lu, G. Zhou et al., Wolbachia Invades Anopheles stephensi Populations and Induces Refractoriness to Plasmodium Infection, Science, vol.340, issue.6133, pp.748-751, 2013.

G. Bian, Y. Xu, P. Lu, Y. Xie, and Z. Xi, The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti, PLoS Pathogens, vol.6, issue.4, p.e1000833, 2010.

M. S. Blagrove, C. Arias-goeta, A. B. Failloux, and S. P. Sinkins, Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus, Proceedings of the National Academy of Sciences, vol.109, issue.1, pp.255-260, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00647866

L. Boundenga, B. Makanga, B. Ollomo, A. Gilabert, V. Rougeron et al., Haemosporidian Parasites of Antelopes and Other Vertebrates from Gabon, Central Africa, PLOS ONE, vol.11, issue.2, p.e0148958, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01960172

K. Bourtzis, S. L. Dobson, Z. Y. Xi, J. L. Rasgon, M. Calvitti et al., Harnessing mosquito?Wolbachia symbiosis for vector and disease control, Acta Tropica, vol.132, pp.S150-S163, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02522213

M. Casiraghi, T. J. Anderson, C. Bandi, C. Bazzocchi, and C. Genchi, A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts, Parasitology, vol.122, issue.1, pp.93-103, 2001.

S. Charlat, A. Duplouy, E. A. Hornett, E. A. Dyson, N. Davies et al., The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina, BMC Evolutionary Biology, vol.9, issue.1, p.64, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428418

E. Chrostek and M. Gerth, Is Anopheles gambiae a natural host of Wolbachia?, 2018.

A. Cohuet, J. C. Toto, F. Simard, P. Kengne, D. Fontenille et al., SPECIES IDENTIFICATION WITHIN THE ANOPHELES FUNESTUS GROUP OF MALARIA VECTORS IN CAMEROON AND EVIDENCE FOR A NEW SPECIES, The American Journal of Tropical Medicine and Hygiene, vol.69, issue.2, pp.200-205, 2003.

B. L. Dodson, G. L. Hughes, O. Paul, A. C. Matacchiero, L. D. Kramer et al., Wolbachia Enhances West Nile Virus (WNV) Infection in the Mosquito Culex tarsalis, PLoS Neglected Tropical Diseases, vol.8, issue.7, p.e2965, 2014.

E. Dumas, C. M. Atyame, P. Milesi, D. M. Fonseca, E. V. Shaikevich et al., Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species, BMC Evolutionary Biology, vol.13, issue.1, p.181, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01944586

O. Duron, D. Bouchon, S. Boutin, L. Bellamy, L. Zhou et al., The diversity of reproductive parasites among arthropods: Wolbachiado not walk alone, BMC Biology, vol.6, issue.1, pp.1-12, 2008.

O. Duron, J. Lagnel, M. Raymond, K. Bourtzis, P. Fort et al., Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination, Molecular Ecology, vol.14, issue.5, pp.1561-1573, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01946039

J. Engelstadter and G. D. Hurst, The ecology and evolution of microbes that manipulate host reproduction, Annual Review of Ecology Evolution and Systematics, vol.40, pp.127-149, 2009.

C. Fanello, F. Santolamazza, and A. Della-torre, Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP, Medical and Veterinary Entomology, vol.16, issue.4, pp.461-464, 2002.

M. Gerth, M. T. Gansauge, A. Weigert, and C. Bleidorn, Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic, Nature Communications, vol.5, pp.1-7, 2014.

M. T. Gillies and M. C. Coetzee, A supplement to the anophelinae of Africa south of the Sahara (Afrotropical region), 1987.

M. T. Gillies and B. De-meillon, The anophelinae of Africa, south of the Sahara, vol.54, 1968.

F. M. Gomes, B. L. Hixson, M. D. Tyner, J. L. Ramirez, G. E. Canepa et al., Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission, vol.114, pp.12566-12571, 2017.

J. T. Griffi, S. Bhatt, M. E. Sinka, P. W. Gething, M. Lynch et al., Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: A mathematical modelling study, Lancet Infectious Diseases, vol.16, issue.4, pp.465-472, 2016.

J. Hamon and J. Mouchet, Secondary vectors of human malaria in Africa, Medecine Tropicale, vol.21, pp.643-660, 1961.

A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.476, issue.7361, pp.454-107, 2011.

A. A. Hoffmann, P. A. Ross, and G. Rasic, Wolbachia strains for disease control: Ecological and evolutionary considerations, Evolutionary Applications, vol.8, issue.8, pp.751-768, 2015.

G. L. Hughes, B. L. Dodson, R. M. Johnson, C. C. Murdock, H. Tsujimoto et al., Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes, Proceedings of the National Academy of Sciences, vol.111, issue.34, pp.12498-12503, 2014.

G. L. Hughes, R. Koga, P. Xue, T. Fukatsu, and J. L. Rasgon, Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae, PLoS Path, vol.7, issue.5, 2011.

G. L. Hughes, A. Rivero, and J. L. Rasgon, Wolbachia can enhance plasmodium infection in mosquitoes: Implications for malaria control?, vol.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02361640

G. L. Hughes, J. Vega-rodriguez, P. Xue, and J. L. Rasgon, Wolbachia strain wAlbB enhances infection by the rodent malaria parasite Plasmodium berghei in Anopheles gambiae mosquitoes, Applied and Environmental Microbiology, vol.78, issue.5, pp.1491-1495, 2012.

I. Iturbe-ormaetxe, T. Walker, and S. L. Neill, Wolbachia and the biological control of mosquito-borne disease, EMBO Reports, vol.12, issue.6, pp.508-518, 2011.

C. L. Jeffries, G. Golovko, M. Kristan, J. Orsborne, K. Spence et al., Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01967418

C. L. Jeffries, G. G. Lawrence, G. Golovko, M. Kristan, J. Orsborne et al., Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa, Wellcome Open Res, vol.3, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01967418

D. A. Joubert, T. Walker, L. B. Carrington, J. T. De-bruyne, D. H. Kien et al., Establishment of a wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management, PLoS Path, vol.12, issue.2, 2016.

Z. Kambris, A. M. Blagborough, S. B. Pinto, M. S. Blagrove, H. C. Godfray et al., Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae, PLoS Path, vol.6, issue.10, 2010.

Z. Kambris, P. E. Cook, H. K. Phuc, and S. P. Sinkins, Immune activation by life-shortening wolbachia and reduced filarial competence in mosquitoes, Science, vol.326, issue.5949, pp.134-136, 2009.

M. Kearse, R. Moir, A. Wilson, S. Stones-havas, M. Cheung et al., Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.28, issue.12, pp.1647-1649, 2012.

P. Kengne, C. Antonio-nkondjio, H. P. Awono-ambene, F. Simard, T. S. Awolola et al., Molecular differentiation of three closely related members of the mosquito species complex, Anopheles moucheti, by mitochondrial and ribosomal DNA polymorphism, Medical and Veterinary Entomology, vol.21, issue.2, pp.177-182, 2007.

P. Kengne, P. Awono-ambene, C. A. Nkondjio, F. Simard, and D. Fontenille, Molecular identification of the Anopheles nili group of African malaria vectors, Medical and Veterinary Entomology, vol.17, issue.1, pp.67-74, 2003.

I. Letunic and P. Bork, Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation, Bioinformatics, vol.23, issue.1, pp.127-128, 2007.

S. J. Li, M. Z. Ahmed, N. Lv, P. Q. Shi, X. M. Wang et al., Plantmediated horizontal transmission of Wolbachia between whiteflies, The ISME Journal, vol.11, issue.4, pp.1019-1028, 2016.

B. Makanga, P. Yangari, N. Rahola, V. Rougeron, E. Elguero et al., Ape malaria transmission and potential for ape-to-human transfers in Africa, vol.113, pp.5329-5334, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01957780

E. A. Mcgraw and S. L. Neill, Beyond insecticides: New thinking on an ancient problem, Nature Reviews Microbiology, vol.11, issue.3, pp.181-193, 2013.

L. A. Moreira, I. Iturbe-ormaetxe, J. A. Jeffery, G. Lu, A. T. Pyke et al., A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell, vol.139, issue.7, pp.1268-1278, 2009.

C. Ndo, C. Antonio-nkondjio, A. Cohuet, D. Ayala, P. Kengne et al., Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa, Malaria Journal, vol.9, p.161, 2010.
URL : https://hal.archives-ouvertes.fr/ird-02897026

D. E. Neafsey, R. M. Waterhouse, M. R. Abai, S. S. Aganezov, M. A. Alekseyev et al., Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes, Science, vol.347, issue.6217, p.43, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02315921

G. Newby, A. Bennett, E. Larson, C. Cotter, R. Shretta et al., The path to eradication: A progress report on the malaria-eliminating countries, Lancet, vol.387, pp.1775-1784, 2016.

E. H. Niang, H. Bassene, P. Makoundou, F. Fenollar, M. Weill et al., First report of natural Wolbachia infection in wild Anopheles funestus population in Senegal, Malaria Journal, vol.17, issue.1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01943873

D. M. Olson, E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. Powell et al., Terrestrial ecoregions of the worlds: A new map of life on Earth, vol.51, pp.933-938, 2001.

J. Osei-poku, C. Han, C. M. Mbogo, and F. M. Jiggins, Identification of wolbachia strains in mosquito disease vectors, PLoS ONE, vol.7, issue.11, 2012.

H. Pates and C. Curtis, Mosquito behavior and vector control, Annual Review of Entomology, vol.50, pp.53-70, 2005.

C. Paupy, B. Makanga, B. Ollomo, N. Rahola, P. Durand et al., Anopheles moucheti and Anopheles vinckei are candidate vectors of ape plasmodium parasites, including Plasmodium praefalciparum in Gabon, PLoS ONE, vol.8, issue.2, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02065040

M. Pombi, P. Kengne, G. Gimonneau, B. Tene-fossog, D. Ayala et al., Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex, Evolutionary Applications, vol.10, issue.10, pp.1102-1120, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02013848

N. Rahola, B. Makanga, P. Yangari, D. Jiolle, D. Fontenille et al., Description of Anopheles gabonensis, a new species potentially involved in rodent malaria transmission in Gabon, Central Africa. Infection Genetics and Evolution, vol.28, pp.628-634, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02065032

H. Ranson and N. Lissenden, Insecticide resistance in African anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control, Trends in Parasitology, vol.32, issue.3, pp.187-196, 2016.

M. F. Richardson, L. A. Weinert, J. J. Welch, R. S. Linheiro, M. M. Magwire et al., Population Genomics of the Wolbachia Endosymbiont in Drosophila melanogaster, PLOS Genetics, vol.8, issue.12, 2012.

V. Robert, D. Ayala, and F. Simard, Les anopheles, Entomologie médicale et vétérinaire, p.687, 2017.

P. Rossi, I. Ricci, A. Cappelli, C. Damiani, U. Ulissi et al., Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors, Parasit Vectors, vol.8, pp.1-10, 2015.

F. Santolamazza, E. Mancini, F. Simard, Y. Qi, Z. Tu et al., Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms, Malaria Journal, vol.7, 2008.

T. L. Schmidt, N. H. Barton, G. Ra?i?, A. P. Turley, B. L. Montgomery et al., Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti, PLOS Biology, vol.15, issue.5, 2017.

W. R. Shaw, P. Marcenac, L. M. Childs, C. O. Buckee, F. Baldini et al., Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development, Nature Communications, vol.7, 2016.

F. Simon, M. Siles-lucas, R. Morchon, J. Gonzalez-miguel, I. Mellado et al., Human and animal dirofilariasis: The emergence of a zoonotic, Mosaic. Clinical Microbiology Reviews, vol.25, issue.3, pp.507-544, 2012.

S. P. Sinkins, H. R. Braig, and S. L. Oneill, Wolbachia superinfections and the expression of cytoplasmic incompatibility, Proceedings of the Royal Society B-Biological Sciences, vol.261, pp.325-330, 1362.

A. Stamatakis, RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies, International Parallel and Distributed Processing Symposium, vol.30, pp.1312-1313, 2006.

N. D. Tsutsui, S. N. Kauppinen, A. F. Oyafuso, and R. K. Grosberg, The distribution and evolutionary history of Wolbachia infection in native and introduced populations of the invasive argentine ant (Linepithema humile), Molecular Ecology, vol.12, issue.11, pp.3057-3068, 2003.

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.476, issue.7361, pp.450-101, 2011.

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nature Reviews Microbiology, vol.6, issue.10, pp.741-751, 2008.

J. H. Werren, W. Zhang, and L. R. Guo, Evolution and phylogeny of Wolbachia : reproductive parasites of arthropods, Proceedings of the Royal Society of London. Series B: Biological Sciences, vol.261, issue.1360, pp.55-63, 1995.

, WHO Expert Committee on Drug Dependence: Report., 1974.

L. Wilkinson, ggplot2: Elegant Graphics for Data Analysis by WICKHAM, H., Biometrics, vol.67, issue.2, pp.678-679, 2011.

F. Zele, A. Nicot, A. Berthomieu, M. Weill, O. Duron et al., Wolbachia increases susceptibility to Plasmodium infection in a natural system, Proceedings of the Royal Society B-Biological Sciences, vol.281, 1779.
URL : https://hal.archives-ouvertes.fr/hal-02361677

R. Zug and P. Hammerstein, Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected, PLoS ONE, vol.7, issue.6, p.e38544, 2012.