J. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nature Reviews Microbiology, vol.6, pp.741-751, 2008.

R. Zug and P. Hammerstein, Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected, PLoS One, vol.7, p.38544, 2012.

L. A. Weinert, E. V. Araujo-jnr, M. Z. Ahmed, and J. J. Welch, The incidence of bacterial endosymbionts in terrestrial arthropods, Proc. R. Soc. B, vol.282, p.20150249, 2015.

E. J. Sazama, M. J. Bosch, C. S. Shouldis, S. P. Ouellette, and J. S. Wesner, Incidence of Wolbachia in aquatic insects, Ecol Evol, vol.7, pp.1165-1169, 2017.

E. J. Sazama, S. P. Ouellette, and J. S. Wesner, Bacterial endosymbionts are common among, but not necessarily within, insect species, Environ. Entomol, vol.48, pp.127-133, 2019.

R. Zug and P. Hammerstein, Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts, Biol Rev, vol.90, pp.89-111, 2015.

O. Duron and G. D. Hurst, Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count, BMC Biology, vol.11, p.45, 2013.

H. M. Frydman, J. M. Li, D. N. Robson, and E. Wieschaus, Somatic stem cell niche tropism in Wolbachia, Nature, vol.441, pp.509-512, 2006.

C. C. Correa and J. W. Ballard, Wolbachia associations with insects: winning or losing against a master manipulator, Frontiers in Ecology and Evolution, vol.3, p.153, 2016.

M. Bailly-bechet, How long does Wolbachia remain on board?, Mol Biol Evol, vol.34, issue.5, pp.1183-1193, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524867

C. Dale and N. A. Moran, Molecular interactions between bacterial symbionts and their hosts, Cell, vol.126, pp.453-456, 2006.

R. Raychoudhury, L. Baldo, D. C. Oliveira, and J. H. Werren, Modes of adquisition of Wolbachia: horizontal transfer, hybrid introgression and codivergence in the Nasonia species complex, Evolution, vol.63, pp.165-183, 2009.

J. Engelstädter and G. D. Hurst, The dynamics of parasite incidence across host species, Evolutionary Ecology, vol.20, issue.6, pp.603-616, 2006.

A. Telschow, P. Hammerstein, and J. H. Werren, The effect of Wolbachia versus genetic incompatibilities on reinforcement and speciation, Evolution, vol.59, issue.8, pp.1607-1619, 2005.

J. A. Breeuwer and J. H. Werren, Microorganisms associated with chromosome destruction and reproductive isolation between two insect species, Nature, vol.346, issue.6284, pp.558-60, 1990.

S. Bordenstein, P. O'hara, and J. H. Werren, Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia, Nature, vol.409, pp.707-710, 2001.

T. W. Donnelly, The Fijian genus Nesobasis Part 1: Species of Viti Levu, Ovalau, and Kadavu (Odonata: Coenagrionidae), New Zealand Journal of Zoology, vol.17, pp.87-117, 1990.

S. Jordan, C. Simon, and D. Polhemus, Molecular systematics and adaptive radiation of Hawaii's endemic damselfly genus Megalagrion (Odonata: Coenagrionidae), Systematic Biology, vol.52, pp.89-109, 2003.

S. Jordan, C. Simon, D. Foote, and R. A. Englund, Phylogeographic patterns of Hawaiian Megalagrion damselflies (Odonata: Coenagrionidae) correlate with Pleistocene island boundaries, Molecular Ecology, vol.14, pp.3457-3470, 2005.

D. A. Polhemus, Phylogenetic analysis of the Hawaiian damselfly genus Megalagrion (Odonata: Coenagrionidae): Implications for biogeography, ecology, and conservation biology, Pacific Science, vol.51, pp.395-412, 1997.

T. W. Donnelly, Melanesobasis gen. nov., a new genus of Fijian damselflies: A possible link between the platycnemidid Lieftinckia and certain coenagrionids (Zygoptera), Odonatologica, vol.13, pp.89-105, 1984.

H. Van-gossum, Male rarity and putative sex-role reversal in Fijian damselflies (Odonata), Journal of Tropical Ecology, vol.23, pp.591-598, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434862

C. D. Beatty, Biogeography and systematics of endemic island damselflies: The Nesobasis and Melanesobasis (Odonata: Coenagrionidae) of Fiji, Ecology & Evolution, vol.7, issue.17, pp.7117-7129, 2017.

M. A. Mcpeek, The macroevolutionary consequences of ecological differences among species, Palaeontology, vol.50, pp.111-129, 2007.

M. A. Mcpeek, The ecological dynamics of clade diversification and community assembly, The American Naturalist, vol.172, pp.270-284, 2008.

R. C. Salunkhe, Distribution and molecular characterization of Wolbachia endosymbionts in Odonata (Insecta) from Central India by multigene approach, Current Science, vol.108, issue.5, pp.971-978, 2015.

G. D. Hurst and F. M. Jiggins, Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts, Proc. Biol. Sci, vol.272, pp.1525-1534, 2005.

J. H. Werren and D. M. Windsor, Wolbachia infection frequencies in insects: evidence of a global equilibrium, Proc Biol Sci, vol.267, pp.1277-1285, 1450.

K. Hilgenboecker, How many species are infected with Wolbachia? a statistical analysis of current data, FEMS Microbiol. Lett, vol.281, pp.215-220, 2008.

S. Narita, Y. Shimajiri, and M. Nomura, Strong cytoplasmic incompatibility and high vertical transmission rate can explain the high frequencies of Wolbachia infection in Japanese populations of Colias erate poliographus (Lepidoptera: Pieridae), Bulletin of Entomological Research, vol.99, pp.385-391, 2009.

A. N. Brown and V. K. Lloyd, Evidence for horizontal transfer of Wolbachia by a Drosophila mite, Exp Appl Acarol, vol.66, issue.3, pp.301-311, 2015.

P. S. Corbet and . Dragonflies, Behaviour and Ecology of Odonata, vol.829, 2004.

W. Zhou, F. Rousset, and S. O'neill, Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proc. R. Soc. Lond. B, vol.265, pp.509-515, 1998.

L. Baldo, Multilocus sequence typing system for the endosymbiont Wolbachia pipientis, Appl Environ Microbiol, vol.72, issue.11, pp.7098-110, 2006.

M. Kearse, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.28, issue.12, pp.1647-1649, 2012.

,

K. A. Jolley, M. S. Chan, and M. C. Maiden, mlstdbNet-Distributed multi-locus sequence typing (MLST) databases, BMC Bioinformatics, vol.5, p.86, 2004.

K. B. Dijkstra, V. J. Kalkman, R. A. Dow, F. R. Stokvis, and J. Van-tol, Redefining the damselfly families: a comprehensive molecular phylogeny of Zygoptera (Odonata), Systematic Entomology, vol.39, issue.1, pp.68-96, 2004.

S. Ferreira, New EPIC nuclear DNA sequence markers to improve the resolution of phylogeographic studies of coenagrionids and other odonates, International Journal of Odonatology, vol.17, pp.135-147, 2014.

O. Folmer, M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek, DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Molecular Marine Biology and Biotechnology, vol.3, issue.5, pp.294-299, 1994.

D. A. Dmitriev and R. A. Rakitov, Decoding of superimposed traces produced by direct sequencing of heterozygous indels, PLoS Comput. Biol, vol.4, issue.7, p.1000113, 2008.

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol.22, pp.4673-4680, 1994.

X. Didelot and D. Falush, Inference of bacterial microevolution using multilocus sequence data, Genetics, vol.175, issue.3, pp.1251-1266, 2007.

A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci, vol.7, issue.4, pp.457-472, 1992.

A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, vol.22, pp.2688-2690, 2006.

F. Ronquist, MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space, Systematic Biology, vol.61, issue.3, pp.539-542, 2012.

D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, jModelTest 2: more models, new heuristics and parallel computing, Nature Methods, vol.9, issue.8, p.772, 2012.

S. Guindon and O. Gascuel, A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood, Systematic Biology, vol.52, pp.696-704, 2003.
URL : https://hal.archives-ouvertes.fr/lirmm-00191949

P. Legendre, Y. Desdevises, and E. Bazin, A statistical test for host-parasite coevolution, Systematic Biology, vol.51, pp.217-251, 2002.

J. A. Balbuena, R. Míguez-lozano, and I. Blasco-costa, PACo: a novel Procrustes application to cophylogenetic analysis, PlosOne, vol.8, p.61048, 2013.

C. Conow, D. Fielder, Y. Ovadia, R. Libeskind-hadas, and . Jane, A new tool for the cophylogeny reconstruction problem, Algorithms in Molecular Biology, vol.5, p.16, 2010.

S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura et al., Molecular Evolutionary Genetics Analysis across computing platforms, Molecular Biology and Evolution, vol.35, pp.1547-1549, 2018.

. R-core-team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2018.

M. C. Hutchinson, E. F. Cagua, J. A. Balbuena, D. B. Stouffer, and T. Poisot, implementing Procrustean Approach to Cophylogeny in R. Methods in Ecology and Evolution, vol.8, pp.932-940, 2017.

E. Paradis, J. Claude, and K. Strimmer, APE: analyses of phylogenetics and evolution in R language, Bioinformatics, vol.20, pp.289-290, 2004.
URL : https://hal.archives-ouvertes.fr/ird-01887318

J. G. Caporaso, QIIME allows analysis of high-throughput community sequencing data, Nature Methods, vol.7, pp.335-336, 2010.