M. W. Alldredge, K. H. Pollock, T. R. Simons, J. A. Collazo, and S. A. Shriner, Time-ofdetection method for estimating abundance from point-count surveys, Auk, vol.124, pp.653-664, 2007.

M. W. Alldredge, K. Pacifici, T. R. Simons, and K. H. Pollock, A novel field evaluation of the effectiveness of distance and independent observer sampling to estimate aural avian detection probabilities, J. Appl. Ecol, vol.45, pp.1349-1356, 2008.

C. L. Amundson, J. A. Royle, and C. M. Handel, A hierarchical model combining distance sampling and time removal to estimate detection probability during avian point counts, Auk, vol.131, pp.476-494, 2014.

D. R. Anderson, Response to Engeman: index values rarely constitute reliable information, Wildl. Soc. Bull, vol.31, pp.288-291, 2003.

N. A. Arnason, C. J. Schwarz, and J. M. Gerrard, Estimating closed population-size and number of marked animals from sighting data, J. Wildl. Manage, vol.55, pp.716-730, 1991.

M. Auger-méthé, C. Field, C. M. Albertsen, A. E. Derocher, M. A. Lewis et al., State-space models' dirty little secrets: even simple linear Gaussian models can have estimation problems, Sci. Rep, vol.6, p.26677, 2016.

R. J. Barker, M. R. Schofield, W. A. Link, and J. R. Sauer, On the reliability of N-mixture models for count data, Biometrics, vol.74, pp.369-377, 2018.

P. Besbeas, S. N. Freeman, B. J. Morgan, and E. A. Catchpole, Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters, Biometrics, vol.58, pp.540-547, 2002.

D. L. Borchers and M. J. Cox, Distance sampling detection functions: 2D or not 2D?, Biometrics, vol.73, pp.593-602, 2017.

D. L. Borchers, J. L. Laake, C. Southwell, and C. G. Paxton, Accommodating unmodeled heterogeneity in double-observer distance sampling surveys, Biometrics, vol.62, pp.372-378, 2006.

S. T. Buckland, D. Anderson, K. Burnham, and J. Laake, Distance Sampling: Estimating Abundance of Biological Populations, 1993.

S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers et al., Advanced Distance Sampling, 2007.

S. T. Buckland, E. A. Rexstad, T. A. Marques, and C. S. Oedekoven, Model-based distance sampling: full likelihood methods, Distance Sampling: Methods and Applications, pp.141-163, 2015.

K. P. Burnham, A theory for combined analysis of ring recovery and recapture data, Marked Individuals in the Study of Bird Populations, 1993.

K. P. Burnham and D. R. Anderson, Model Selection and Multi-model Inference: A Practical Information-theoretic Approach, 2002.

H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, 2001.

R. Chandler, J. Royle, and D. King, Inference about density and temporary emigration in unmarked populations, Ecology, vol.92, pp.1429-1435, 2011.

R. Choquet, L. Rouan, and R. Pradel, Program E-SURGE: a software application for fitting multievent models, Environmental and Ecological Statistics, pp.845-865, 2009.

M. J. Clement, S. J. Converse, and J. A. Royle, Accounting for imperfect detection of groups and individuals when estimating abundance, Ecol. Evol, vol.7, pp.7304-7310, 2017.

P. B. Conn, J. L. Laake, and D. S. Johnson, A hierarchical modeling framework for multiple observer transect surveys, PLoS ONE, vol.7, 2012.

T. Couturier, M. Cheylan, A. Bertolero, G. Astruc, and A. Besnard, Estimating abundance and population trends when detection is low and highly variable: a comparison of three methods for the Hermann's tortoise, J. Wildl. Manage, vol.77, pp.454-462, 2013.

F. V. Dénes, L. F. Silveira, and S. R. Beissinger, Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation, Methods Ecol. Evol, vol.6, pp.543-556, 2015.

E. B. Dennis, B. J. Morgan, and M. S. Ridout, Computational aspects of N-mixture models, Biometrics, vol.71, pp.237-246, 2015.

R. M. Engeman, Indexing principles and a widely applicable paradigm for indexing animal populations, Wildl. Res, vol.32, pp.203-210, 2005.

J. Fan, H. Liu, Z. Wang, and Z. Yang, Curse of Heterogeneity: Computational Barriers in Sparse Mixture Models and Phase Retrieval, 2018.

I. J. Fiske and R. B. Chandler, unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance, J. Stat. Softw, vol.43, pp.1-23, 2011.

E. S. Garrett and S. L. Zeger, Latent class model diagnosis, Biometrics, vol.56, pp.1055-1067, 2000.

G. Gauthier, G. Péron, J. Lebreton, P. Grenier, L. Oudenhove et al., Partitioning prediction uncertainty in climate-dependent population models, Proc. R. Soc. B, vol.283, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01604396

T. Gerrodette, A power analysis for detecting trends, Ecology, vol.68, pp.1364-1372, 1987.

P. Gibert, J. Appolinaire, and . Oncfs-sd65, Intoxication d'isards au Lindane dans les Hautes-Pyrénées, Faune Sauvage, vol.261, pp.42-47, 2004.

R. B. Harris, Reliability of trend lines obtained from variable counts, J. Wildl. Manage, vol.50, pp.165-171, 1986.

W. L. Kendall, J. D. Nichols, and J. E. Hines, Estimating temporary emigration using capture-recapture data with Pollock's robust design, Ecology, vol.78, pp.563-578, 1997.

W. Link and J. Sauer, Estimating population change from count data: application to the North American Breeding Bird Survey, Ecol. Appl, vol.8, pp.258-268, 1998.

A. Loison, J. Appolinaire, J. M. Jullien, and D. Dubray, How reliable are total counts to detect trends in population size of chamois Rupicapra rupicapra and R. pyrenaica?, Wildlife Biol, vol.1, pp.77-88, 2006.

T. A. Marques, S. T. Buckland, R. Bispo, and B. Howland, Accounting for animal density gradients using independent information in distance sampling surveys, Stat. Methods Appl, vol.22, pp.67-80, 2013.

W. R. Mebane and J. S. Sekhon, Genetic Optimization Using Derivatives: the rgenoud package for R, J. Stat. Softw, vol.42, pp.1-26, 2011.

D. L. Miller, Distance Sampling detection function and abundance Estimation, 2015.

J. Nichols, J. Hines, J. Sauer, and F. Fallon, A double-observer approach for estimating detection probability and abundance from point counts, Auk, vol.117, pp.393-408, 2000.

D. Pépin and J. F. Gerard, Group dynamics and local population density dependence of group size in the Pyrenean chamois, Rupicapra pyrenaica, Anim. Behav, vol.75, pp.361-369, 2008.

Q. Richard, C. Toïgo, J. Appolinaire, A. Loison, and M. Garel, From gestation to weaning: combining robust design and multi-event models unveils cost of lactation in a large herbivore, J. Anim. Ecol, vol.86, pp.1497-1509, 2017.

J. A. Royle, N-mixture models for estimating population size from spatially replicated counts, Biometrics, vol.60, pp.108-115, 2004.

C. J. Schwarz and G. A. Seber, Estimating animal abundance: review III, Stat. Sci, vol.14, pp.427-456, 1999.

R. Sollmann, B. Gardner, R. B. Chandler, and J. A. Royle, An open-population hierarchical distance sampling model, Ecology, vol.96, pp.325-331, 2015.

C. Toïgo, J. M. Gaillard, and J. Michallet, La taille des groupes: un bioindicateur de l'effectif des populations de bouquetin des Alpes (Capra ibex ibex, Mammalia, vol.60, pp.463-472, 1996.

J. A. Veech, J. R. Ott, and J. R. Troy, Intrinsic heterogeneity in detection probability and its effect on N-mixture models, Methods Ecol. Evol, vol.7, pp.1019-1028, 2016.

J. M. Ver-hoef and P. L. Boveng, Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data?, Ecology, vol.88, pp.2766-2772, 2007.

B. K. Williams, J. D. Nichols, and M. J. Conroy, Analysis and Management of Animal Populations: Modeling, Estimation, and Decision Making, 2002.

Q. Zhao and J. A. Royle, Dynamic N-mixture models with temporal variability in detection probability, Ecol. Model, vol.393, pp.20-24, 2019.