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Highlights 16 

• We generalize distance sampling to analyze multi-year multi-site population surveys 17 

when sampling protocols vary across years and sites, using multiple observers and 18 

time to detection in addition to distance information. 19 

• Standard distance sampling may misrepresent population trends in the presence of 20 

temporal variation in the availability to detection. 21 

• The estimation of availability to detection is improved by combining multiple data 22 

types. 23 

• The new framework is costly in terms of number of parameters to estimate and 24 

computing time, but compatible with the logistics of typical ungulate population 25 
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ABSTRACT 30 

To facilitate the use of population counts as an index of population change, we describe a 31 

generalization of the distance sampling methodology to analyze, in addition to distance to the 32 

observer, two other ways to estimate imperfect detection probability: multiple observers and 33 

time-to-detection, in a flexible manner, meaning that not all sites or years need to have distance 34 

information or be surveyed in the same way every year. We also account for the effect of 35 

partially-observed individual covariates, to account for the effect of group size on detection 36 

probability. Finally, we separate the probability of availability to detection from the probability of 37 

detection itself. We perform a thorough, illustrated assessment of the pros and cons of this 38 

framework with simulations and real case studies. First, we compare to simple linear models, 39 

illustrating the magnitude of the bias caused by imperfect detection. Second, we compare to 40 

standard distance sampling, illustrating the bias caused by variation in the probability of 41 

availability to detection. However, the availability to detection was weakly identifiable, meaning 42 

that the ability to separate it from detection probability, and therefore debias the trend estimate, 43 

depended on the data configuration. Combining distance with multiple observers and with time-44 

to-detection solved the weak identifiability in an applied case study. We recommend using both 45 

the type of analysis we showcase, and a simple regression of the population count against time. 46 

Discrepancies between results from simple and complex analyses can help identify sources of 47 

bias in the former and loss of precision in the latter within the logistical constraints of local 48 

wildlife management schemes.  49 

Key-words: capture-recapture; demography; distance sampling; imperfect detection; indicator of 50 

ecological change;  51 

  52 
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INTRODUCTION 53 

The way animal populations change through time is an essential part of environmental 54 

assessments, from local stock management schemes to global biodiversity indices. Population 55 

counts often constitute the base data for these assessments. Yet population counts are well-known 56 

to yield a flawed picture of population dynamics because of confounding factors such as 57 

imperfect detection and counting errors (Anderson, 2003; Engeman, 2005; Gerrodette, 1987; 58 

Harris, 1986; Link and Sauer, 1998). A broad range of methods have been proposed to overcome 59 

this issue (Williams et al., 2002). Our first objective herein is to quickly review these methods 60 

and some of the aspects we view as shortcomings. Second, we address those shortcomings, by 61 

assembling together several add-on features that improve the performance of distance sampling 62 

(Buckland et al., 2007, 1993). More precisely, we devise a version of distance sampling where 63 

multiple observers can document the detection process independently (Alldredge et al., 2008; 64 

Conn et al., 2012; Nichols et al., 2000), where each counting session can be divided into 65 

secondary sessions (Alldredge et al., 2007; Amundson et al., 2014; Chandler et al., 2011), and 66 

where availability to detection is modelled separately from detection itself (Burnham, 1993; 67 

Chandler et al., 2011), thereby introducing a “robust design” (Kendall et al., 1997) philosophy to 68 

distance sampling. We focus on studies that monitor population trends across a few locations over 69 

the long term, as opposed to one-off surveys of numerous locations, and aim to document the 70 

optimal sampling design and the risk of flawed inference when not accounting for confounding 71 

factors when estimating population trends.  72 

However, complex models tend to have low statistical power (lower precision) and to 73 

exhibit estimation issues when applied to sparse datasets, meaning that special care needs to be 74 

taken at the sampling design stage. In particular, we demonstrate a case of weak identifiability, 75 

that is a case where the parameters are in theory all separately estimable, but their relative 76 
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contributions to the variance in the data becomes impossible to separate as the data get sparser 77 

(Auger-Méthé et al., 2016; Barker et al., 2018; Fan et al., 2018; Garrett and Zeger, 2000). A 78 

straightforward example of weak identifiability is when attempting to discriminate two categories 79 

of individuals based on their size. The discriminatory power (model identifiability) weakens as 80 

the difference between the two categories decreases below to the within-category variance, i.e., 81 

the parameter identifiability depends on the biological properties of the system (Garrett and 82 

Zeger, 2000). In our case, the issue affected the separation of availability to detection and 83 

detection when available, with consequences for the estimation of population trends when 84 

availability was either very variable over time or negatively correlated to detection. 85 

A QUICK REVIEW OF THE METHODS TO ANALYZE PATTERNS IN POPULATION 86 

DYNAMICS USING COUNT DATA 87 

The Index of population size methodology (IPS) 88 

Hereafter the acronym “IPS” refers to methodologies that infer patterns in population dynamics 89 

using the expected count, i.e., the product between the population abundance and the probability 90 

of detection. Some IPS methods consist in averaging the count over several replicates, i.e., they 91 

“average out” the sampling variance around the expected count (Loison et al., 2006). These 92 

methods assume that the expected detection probability is the same everywhere and every time, 93 

and that most of the noise around the expected count is caused by counting errors and other 94 

stochastic, constant-mean processes. Alternatively, one may rely on linear models of the count 95 

across space and time. Linear predictors and random effects would then control for factors of 96 

variation in detection probability, such as observer proficiency, vegetation type, or weather (Link 97 

and Sauer, 1998), thereby relaxing the assumption that the expected detection probability is the 98 

same everywhere and every time.  99 
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The main issue with the otherwise simple and effective IPS approach is that, if a factor 100 

jointly influences population abundance and detection probability, it will not be possible to tease 101 

apart these two influences (Anderson, 2003). Furthermore, the factors of variation in detection 102 

probability may not be a priori known and quantified, preventing their inclusion as explanatory 103 

variables. Lastly, count data are often very noisy, in which case IPS methods can become 104 

unreliable or request too many replicates to be tractable (Gerrodette, 1987; Harris, 1986). 105 

Population reconstruction from individual-based data 106 

Because of the above shortcomings of the IPS approach, researchers have historically preferred to 107 

“reconstruct” the population dynamics from estimates of vital rates, such as survival and 108 

fecundity (Caswell, 2001; Williams et al., 2002; see also Besbeas et al., 2002). In this approach, 109 

one uses individual-based data to compute, each year, the balance between the births and deaths, 110 

and thereby the population growth rate, yielding an index of population abundance relative to the 111 

abundance at the start of the study. The main advantage of this approach is the ability to 112 

investigate individual and environmental variation in vital rates, and thereby obtain realistic 113 

models of population dynamics likely to yield reliable short-term predictions (Gauthier et al., 114 

2016). The main issue is the cost and field-intensiveness, and the fact that the reconstructed 115 

abundance is conditioned on the initial population estimate, i.e., it is an index relative to the 116 

initial population abundance.  117 

Unmarked methods 118 

To avoid the shortcomings of the IPS and the cost and field-intensiveness of population 119 

reconstruction, the “unmarked” philosophy (Fiske and Chandler, 2011) is currently gaining in 120 

popularity. This refers to methods that do not require individual-based data from marked or 121 

otherwise recognizable individuals, but that still separate the variance in the count data into a 122 
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sampling (detection) and a process (population dynamics) components. Distance sampling 123 

(Buckland et al., 1993) is the first of these “unmarked” methodologies to have been widely used 124 

for abundance and population trend estimation. In distance sampling, the decline in recorded 125 

abundance with distance to the observer is attributed to a decline in detection probability, and 126 

leveraged to correct the raw count data for imperfect detection. Another seminal model 127 

underlying the unmarked philosophy is the N-mixture model (Royle, 2004). In the N-mixture 128 

model, the sampling variance across replicated counts is modelled as the outcome of a binomial 129 

process whose success rate is the individual detection rate. 130 

Perhaps because they were so successful that they have been tested in a wide variety of 131 

situations, these two approaches have revealed a few shortcomings. In particular, the N-mixture 132 

approach may yield overestimated or infinite estimates of population size when detection 133 

probability is small or when there are few replicates (Couturier et al., 2013; Dennis et al., 2015; 134 

Veech et al., 2016). Recently, Barker et al. (2018) explained this pattern as a case of weak 135 

identifiability. When the data are sparse, solutions with large abundance and low detection are as 136 

likely as solutions with low abundance and large detection. In addition, the N-mixture model 137 

requires that the detection probability is constant across replicate counts. This arguably prevents 138 

the accurate description of the sampling process (Barker et al., 2018), even if the issue could in 139 

theory be resolved by adding an additional hierarchical layer in the model (Zhao and Royle, 140 

2019). Lastly, the N-mixture model fitting procedure in the Bayesian framework is sensitive to 141 

the arbitrary choice of a maximum potential population size, requiring some biological insight 142 

that may not always exist prior to the analysis (Couturier et al., 2013; Dennis et al., 2015).  143 

Now regarding the distance sampling methodology, one of the lingering issues is that 144 

crypsis and associated behaviors, vertical movements such as diving or climbing trees, and 145 

temporary emigration out the survey area leads some individuals to be temporally unavailable to 146 
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detection. They are still part of the population, but their detection probability is temporarily zero. 147 

Buckland et al. (1993) introduced the familiar �� term to describe this availability probability. 148 

This parameter must however be documented separately, for example with telemetry data 149 

(Couturier et al., 2013; Marques et al., 2013), which can however be quite costly and field-150 

intensive. In addition, distance sampling assumes that animal occurrences are equally likely at 151 

any point in the study area, and in particular that the animals do not avoid the observer’s location. 152 

If that assumption is not met, the estimated detection function does not monotonically decrease 153 

with distance from the observer nor start at �� = 1 (Borchers and Cox, 2017). This discrepancy 154 

can be accommodated by combining the analysis of forward and perpendicular distances in 155 

transect-based distance sampling (Borchers and Cox, 2017). However, this type of improvement 156 

to the basic distance sampling framework is not always easy to implement in the field. The 157 

alternative solution, that we will further develop, is to combine distance with additional 158 

“detection data” from double observer protocols (Borchers et al., 2006; Sollmann et al., 2015) or 159 

time-to-detection protocols (Amundson et al., 2014). Lastly, another lingering criticism of 160 

distance sampling is that for a long time, software implementations were only geared towards 161 

obtaining snapshots of the population abundance, not monitoring fluctuations in abundance over 162 

multiple years or sites. In particular, the software did not facilitate the borrowing of information 163 

across years and sites.  164 

OUR MODEL 165 

The model was motivated by surveys of mountain ungulate populations in France, i.e., gregarious 166 

herbivorous large mammals that live in rough terrain with impaired observer visibility, that are 167 

surveyed on a yearly basis, from the ground, at a few representative locations, initially to monitor 168 

how the populations recovered from historical over-harvesting, now mostly to adaptively manage 169 
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their harvest and monitor the effect of epizootics. Because we ended up assembling in a flexible 170 

way many of the model features that we reviewed above, we expect our framework to be relevant 171 

in other situations as well. We first review the three types of “detection data” that we consider, 172 

then we describe the likelihood function that allows their joint analysis, a few necessary post-hoc 173 

manipulations to compute derived quantities, and finally we thoroughly discuss sampling design 174 

optimization, weak identifiability, and statistical power, using application cases and simulations. 175 

Three types of detection data for unmarked animals  176 

The first type of detection data is distance to the observer – our model is a generalization of the 177 

distance sampling model. In our implementation, distance may be recorded exactly, or binned 178 

into classes of approximate distance. Importantly, when counting animals that are grazing the 179 

distant opposite slope of a valley, distance is not always relevant as an information about 180 

detection probability, i.e., the visibility is sometimes good enough that all the animals have 181 

almost the same detection probability. Therefore, it is interesting to be able to combine distance 182 

sampling with other sources of information about detection, in a flexible way that allows the joint 183 

analysis of locations where distance is the main source of information about detection, and 184 

locations where distance conveys little information. 185 

The second type of detection data comes from the multiple-observer protocol (Borchers 186 

et al., 2006; Nichols et al., 2000). For each detected individual or group of individuals, the series 187 

of detection or non-detection by several observers generates an history of detection akin to a 188 

capture-recapture history. Distance then becomes an individual covariate associated to each 189 

individual capture-recapture history. In a nutshell, the proportion of observers that detected an 190 

individual informs the detection probability of that individual, and this can be averaged across 191 

individuals for more reliable inference. Importantly, we need to consider the risk that observers 192 
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influence each other (Borchers et al., 2006), e.g., by noticing when the others take out their 193 

notebook or look intensively in a given direction. For this reason, we advocate (and we 194 

implement in our model) a removal design for the multiple-observer protocol (Nichols et al., 195 

2000). We establish an order among the observers. Observer n+1 can only add new detections 196 

that observer n did not make. In addition to avoiding positive observer bias, the removal design 197 

requires less post-session communication between observers than the full multiple-observer 198 

protocol and is thus more straightforward to implement.  199 

The third and last type of detection data is generated by a time-to-detection protocol 200 

(Alldredge et al. 2007; a.k.a. removal sampling protocol sensu Fiske and Chandler 2011). For this 201 

protocol, we assume that the time to detection scales to the instant detection probability. In 202 

practice, we may discretize the detection process by dividing the count period into secondary 203 

occasions. Then, the series of detections and non-detections during the secondary occasions 204 

constitutes a capture-recapture history for each detected individual, similar to the robust design 205 

with within-session closure assumption (Kendall et al., 1997). However, once an individual has 206 

been detected once, its probability of detection is drastically improved because the observers now 207 

know that this individual is present and roughly where it is. For this reason, we also implement a 208 

removal design for the time-to-detection protocol.  209 

In summary, we record the first secondary occasion at which an individual is observed, 210 

the first observer in an ordered series who recorded it, and at which distance. But we can make do 211 

with just one or two of these information bits. 212 

Group size 213 

Because mountain ungulates (our motivation for the new development) often live in groups, the 214 

statistical unit in our model is the group of animals, or the cluster sensu Buckland et al. (1993). 215 
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One of our concerns is the effect of group size on detection probability, and in particular the way 216 

in which covariation between abundance and group size may flaw the IPS methodology. In other 217 

words, if group size increases with abundance (Pépin and Gerard, 2008; Toïgo et al., 1996), and 218 

detection probability increases with group size, the observed population growth rate may be 219 

artificially inflated, potentially leading to over-optimistic management decisions. Each detected 220 

group is described by two group covariates: the group size and the distance to the observer. The 221 

group size data is considered error-free; there is no counting error on individual groups, or partial 222 

availability of groups. To deal with counting errors or partial availability of groups, see Clement 223 

et al. (2017), but this feature is not supported in our framework. 224 

Model likelihood 225 

We denote � the set of model parameters (Table 1) and Y the detection data. Y is stratified across 226 

K sites, T years, ��,	 within-year visits to site k in year t, 
�,	,� robust design-style secondary 227 

occasions within visit u to site k in year t, and ��,	,� observers. As noted above, ��,	, 
�,	,�, and 228 

��,	,� can change across sites, years, and visits, allowing for a flexible study design. For example 229 

��,	,� = 1 means that only one observer participated in the survey of site k, year t, and visit u. 230 

The likelihood 
��|�� describes the probability to record Y as a function of �. For each detected 231 

group i, we know the site k, the year t, the visit u, the secondary session ��, the observer ��, the 232 

distance ��, and the group size ��. From these data we can compute the probability ��,	,�,� that the 233 

group was detected, as the product of four terms: the probability that the group was available for 234 

detection, the probability that it was not detected until observer ��, the probability that observer 235 

�� did not detect it until subsession ��, and the probability that the observer �� eventually detected 236 

it during subsession ��. 237 
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Eq. 1 

P�,	,�,�  = ��,	,������� !�"!# $% &#$#'$ %( ∙ *+ ,1 − .�,	,�,/���, ���012/234
/54 6�77777777�77777777�8%$ &#$#'$#& 9($ ! %":#;�#; /2

∙ <,1 − .�,	,�,/2���, ���01234=>???????@???????A8%$ &#$#'$#& 9($ ! :9":#:: %( 12
∙ .�,	,�,/2���, ���>???@???AB#$#'$#& "C %2 �$ 12

 

The product between the first pair of brackets is replaced by a one if �� = 1. All the notation is 238 

summarized in Table 1.  239 

The product of all the ��,	,�,� terms corresponds to the overall probability to detect the 240 

groups that were detected, in the way they were detected. Then we need to account for the groups 241 

that were not detected. This is the only place where the population abundance enters the 242 

likelihood. The challenge is however that the group size and distance from the observer are, 243 

obviously, not known for the groups that were not detected. As is routinely done in this type of 244 

situation, we tackled this as a simple extrapolation problem, by assuming that non-detected 245 

groups were drawn from the same stochastic model as detected groups, but that they were on 246 

average farther and smaller than detected groups. We introduced the distribution of distances to 247 

the observer, denoted �D��|E�, and the distribution of group sizes, denoted �D��|E, F, G�. In the 248 

present implementation, �D��|E� only depended on the configuration of the site. We informed it 249 

by a separate field of view analysis in a GIS software. For �D��|E, F, G�, based on 250 

recommendations by Ver Hoef & Boveng (2007) and on the observation that there was an excess 251 

of solitary animals relative to the negative-binomial distribution, we used a one-inflated negative-252 

binomial distribution of group sizes. We included the three parameters of that distribution in the 253 

list of parameters to be estimated (Table 1).  254 

Lastly, we implemented two ways to model the relationship between distance and 255 

detection probability. First, as is often the case in practice (Miller, 2015), the link between 256 
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detection probability and distance could follow a half-normal function. The spread parameter, 257 

a.k.a. half-detection distance, denoted H�,	,/,�, was made to vary log-linearly with group size. 258 

Alternatively, we also implemented a histogram-like shape, i.e., a piecewise staircase function. In 259 

this case, the effect of group size on detection probability was additive to the effect of distance on 260 

the logit-log scale. In both cases, the result was the function .�,	,�,/��, �� giving the site-, year-, 261 

visit-, and observer-specific detection probability as a function of group size and distance to the 262 

observer.  With all this notation, we can then write the probability that one group went undetected 263 

as: 264 

Eq. 2 

I�,	,� =
Group was not available Group was available but not detected

[1 − ��,	,�\       + ��,	,� ∙ ^ ^ * + ,1 − .�,	,�,/��� , ���0_`,a,bc`,a,b

/54 6 Pr��|E, F, G�Pr��|E� d� d�de
�7777777777777777777777�7777777777777777777777�

 

The integration over all possible group sizes and distances to the observer addresses the fact that 265 

the group size and the distance to the observer are not known but are drawn from the same 266 

distribution as the detected groups, after correcting for detection biases. In practice we computed 267 

this integral using a numerical quadrature (a.k.a. Riemann sum approximation). The probability 268 

that the total number of groups in site k during year t is f�,	 can then be expressed as a binomial 269 

law, with number of trials f�,	, number of successes f�,	 − g�,	,� where g�,	,� is the number of 270 

detected groups during visit u, and success probability I�,h,�. The complete joint likelihood over 271 

all sites, years, and visits is then finally: 272 

Eq. 3 


��|�� ∝ +
jk
kk
l Detected groups Undetected groups
p + P�,	,�,� ∙ Pr���|E, F, G� q`,a,b

�54 r�77777777�77777777� f�,	!g�,	,�! [f�,	 − g�,	,�\! I�,h,�t`,a3q`,a,b�7777777777�7777777777�
uv
vv
w

�,	,�  

Throughout, detection and availability probabilities can be made to vary with site-273 

specific covariates (e.g., elevation, land ownership), visit-specific covariates (e.g., cloud cover, 274 
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temperature), linear temporal trends across years, and site- and time- random effects. Random 275 

effects are however not made available in the enclosed R-package (but see cat application case 276 

below). 277 

Our model is a generalization of distance sampling because if we remove the multiple 278 

observer and time-to-detection information (��,	,� = 
�,	,� = 1), if we fix all the ��,	,� to one, 279 

and if we remove all the dependencies on g, we arrive at a likelihood of the form explained by 280 

Buckland, Rexstad, Marques, & Oedekoven (2015). By contrast, our model does not belong to 281 

the N-mixture class of models because the binomial error structure applies within, not across sites 282 

and visits.  283 

To obtain the maximum-likelihood estimates of the model parameters, we find the 284 

minimum of −x��
�y|z�. For that optimization we recommend the genetic algorithm with 285 

derivatives (Mebane and Sekhon, 2011), because in our experience there are many local minima 286 

in the negative log-likelihood. The preferred combination of model features should be selected 287 

using the Akaike Information Criterion (Burnham and Anderson, 2002), although to our 288 

knowledge there are no goodness-of-fit tests readily available for this type of model. 289 

Post-hoc manipulations 290 

The above model fitting procedure yields an estimate for the number of groups f�,	. To compute 291 

the population abundance, denoted {�,	, we multiplied the number of groups by the expected 292 

group size, corrected for detection biases, using the following formula: 293 

 Eq. 4 {|�,	 = max�54…�`,a p � ��
q`,a,b

�54 r + �f|�,	 − max�54…�`,a g�,	,�� ∑ [� ∙ Pr� ��|E, F, G� ∙ ���,	���\��e54∑ [Pr� ��|E, F, G� ∙ ���,	���\��e54  
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����54…�`,a ,∑ ��q`,a,b�54 0 is the maximum number of individuals counted in site k during year t. 294 

��,	��� is the probability of not detecting a group of size g but of unknown distance to the 295 

observer. ��,	��� is computed with an equation similar to Eq. 2. In practice, the sum over g was 296 

stopped after a large g chosen so that Pr� ��|E, F, G� ∙ ���,	��� was negligible.  297 

To estimate temporal trends in population abundance, we a posteriori regressed {|�,	 298 

against year t. We considered the random effect of site k on the intercept, and we weighed the 299 

Poisson-distributed regression by the inverse of the sampling variance of {|�,	. The slope of the 300 

regression represents the log-linear temporal increase or decrease in abundance. Tools for model 301 

building, model fitting, and post-processing are provided in the R-package chamois for R 302 

(Supplementary Data file). 303 

SIMULATION STUDIES  304 

Demonstrating bias in simpler methods  305 

For this section, we designed a scenario specifically to challenge the IPS methodology and fully 306 

illustrate its shortcomings. At the start of a 6-year period, 240 animals were equally distributed 307 

across 8 separate sites. The abundance decreased in a similar fashion in all sites, reaching a total 308 

of 80 animals at the end of the 6 years. Over the 6 years, the average detection probability 309 

increased. The half-detection distance increased linearly from 150 to 665m and mean group size 310 

increased linearly from 1.7 to 3.2, while the log-scale effect of group size on the half-detection 311 

distance was +0.5. By contrast, the availability probability decreased from 0.80 to 0.70, which 312 

partly compensated the increase in detection probability. Each year, each site was visited 3 times 313 

by 2 observers. The 8 sites were treated as spatial replicates in the analysis. 314 



15 

 

These parameters values were purposely chosen so that the expected population count 315 

slightly increased over the years, whereas the actual population size decreased.  Accordingly, the 316 

IPS methodology failed to detect the underlying population decrease (Table 2).  317 

This scenario was also expected to challenge the N-mixture approach, because the non-318 

independence of animals in groups and the two-step detection process (availability and detection) 319 

violated the binomial variance assumption. In addition, the simulated counts were quite small 320 

especially at the end of the simulation, which the relatively large simulated effort (24 replicates 321 

per year) may not adequately compensate for. We tentatively analyzed the simulated datasets with 322 

the N-mixture methodology. We used the unmarked package for R (Fiske & Chandler, 2011), and 323 

specifically the option siteCovs of the function unmarkedFramePCount to code for year 324 

effects in the routine pcount. This way we directly estimated the temporal trend in abundance 325 

as part of the list of parameters of the N-mixture model. The performances of the N-mixture were 326 

slightly improved compared to the IPS method, but still featured a large proportion of type I and 327 

type II errors (Table 2). Type II errors (false negatives) likely stemmed from the poor fit of the 328 

model to the data, and in particular the fact that we specified a model that aggregated the effects 329 

of the temporal variation in detection, in group size, and in availability to detection, instead of 330 

separating them. Type I errors (false positives) likely stemmed from the occurrence of unrealistic 331 

estimates due to the identifiability issues that we reviewed above. 332 

The simulation scenario was also expected to challenge the standard distance sampling 333 

methodology, because the probability of detection at distance 0 was below zero and varied over 334 

time. Nevertheless, we tentatively implemented distance sampling using the Distance package for 335 

R (Miller, 2015), and more precisely the ds function, with default options for the shape of the 336 

decrease in detection with distance, and using the region.table option to code for the 337 
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different years, the sample.table option to code for the different sites, and the obs.table 338 

option to code for the different visits (Miller, 2015). Thereby we obtained one overall estimate of 339 

abundance per year, which we then post-processed in a generalized linear model to compute the 340 

estimated temporal trend. The distance methodology performed very well, with only very few 341 

type II errors to report. However, because temporal variation in availability was not modelled, the 342 

magnitude of the population decline was, as expected, consistently under-estimated (RMSE = 343 

35%).  344 

The new methodology, which as a reminder is a generalization of distance sampling, 345 

improved on the trend estimate (RMSE = 15%) by separating availability and detection. It 346 

however exhibited a slightly larger rate of type II error than distance sampling (Table 2), despite 347 

fully using the double observer data, indicating a loss of precision caused by the added number of 348 

parameters to estimate. 349 

Quantifying the loss of precision 350 

The relatively large rate of type II error in our method indicates that correcting for known sources 351 

of bias with our new framework comes at a cost in terms of loss of precision. Therefore, the effort 352 

needed to fully accommodate confounding factors, should any occur, ought to be anticipated at 353 

the study design stage. To investigate this further, we simulated a range of scenarios where the 354 

IPS methodology was expected to perform well. That way, we could compare the statistical 355 

power of our method to that of the simplest method with the lowest number of parameters, 356 

providing a direct quantification of the loss of precision, and a guideline for sampling design.  We 357 

simulated K sites with initially 100 animals per site, so K*100 animals in total at the start of the 358 

simulations. The population decreased by 5% per year over a 6-year period. We parameterized 359 

the scenarios so that half of the decline was accounted for by a decline in the number of groups 360 
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per site and the remaining half was caused by a decline in the number of animals per group. Each 361 

year, O observers visited each site U times for 6 years. At each visit, they divided the count in V = 362 

3 secondary occasions, following the time-to-detection protocol that we described under “Our 363 

model” above. Observers did not record distance; instead, the inference was entirely based on the 364 

time to detection and multiple-observer data. Detection probability increased with group size with 365 

a slope of 0.1 on the logit-log scale. The intercept of the detection-size relationship was kept 366 

constant over the years. In other words, the only source of temporal variation in nuisance 367 

parameters was through the change in group size with year. We ran 100 simulations per 368 

combination of K, U and O. We computed the proportion of replicates in which the population 369 

decrease was effectively detected.  370 

As expected, the IPS method performed very well in this scenario with limited variation 371 

in nuisance parameters (Fig. 1). The loss of precision by our new method relative to the IPS did 372 

not appear large enough to prevent real-world applications (Fig. 1; red curves vs. blue curves). 373 

For example, monitoring 8 sites for 6 years was enough to be able to detect a 5% yearly rate of 374 

decrease (Fig. 1). This is a sample size typical of many ungulate monitoring schemes. Clearly, the 375 

IPS methodology would have reached the same objective with a much smaller effort (3 sites 376 

monitored over 3 years). But it would not have been able to detect the effect of confounding 377 

factors should any be present.  378 

Another issue that these simulations put to the fore was weak identifiability. When the 379 

availability probability was < 0.3 (very low), the procedure converged towards a solution with 380 

�� = 1 and .̂ = �.. The probability of availability was consistently over-estimated at boundary 381 

one and that bias was propagated to the detection probability, which was under-estimated (Fig. 382 

A4a). This is a typical weak identifiability issue, whereby the parameters φ and p are separately 383 

estimable only when the data are dense. When p < 0.3, not enough groups are detected. In 384 
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Application case #2 (below), we demonstrate that incorporating additional sources of detection 385 

data, as we advocate in this study, resolved the issue in a real-life application.  386 

Lastly, these simulations demonstrate that the double observer protocol was never cost-387 

effective in terms of precision compared to doubling the number of surveyed sites or the number 388 

of replicates per site.  389 

 390 

REAL STUDY CASES 391 

Application case #1: Pyrenean chamois 392 

This case study aimed at empirically comparing the new method to the population reconstruction 393 

method. The latter is expected to perform best so is used as a reference point. The objective is to 394 

demonstrate the good performance of the new method at a fraction of the cost of the population 395 

reconstruction method. In the Bazès study area (foothills of the Pyrenees mountains; 43.00°N, 396 

0.23°W), the Pyrenean chamois (Rupicapra pyrenaica) population has experienced a mass 397 

mortality event in the summer of 2001 that was attributed to an intoxication with an insecticide 398 

(Gibert et al., 2004). Since then, breeding success has remained low. The monitoring program 399 

involved up to 27 visits per year since 1998.  At each visit, the distance sampling protocol was 400 

applied from the same hiking trail each time. In the meantime, chamois were captured and 401 

marked every year, and then marked individuals were resighted during the population surveys.  402 

When applying our new framework, we used the Akaike Information Criterion to select 403 

the presence or absence of temporal trends in detection probability, availability probability, and 404 

group size. We also asked whether availability probability changed during the 2001 events, as 405 

would be expected if the mass mortality event was associated to a change in movement rates.  406 
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When analyzing the capture-recapture data, we used two methods. We used the Arnason-407 

Schwarz-Gerard model (Arnason et al., 1991; Schwarz and Seber, 1999) to estimate population 408 

size each year based on the year-specific estimated detection probability for marked individuals 409 

and the number of detected individuals (marked and unmarked). We also reconstructed the 410 

population trajectory using a matrix population model (Caswell, 2001) with 10 age-classes. The 411 

demographic parameters (a.k.a. vital rates) in the matrix population model were estimated from 412 

the capture-recapture data with E-Surge (Choquet et al., 2009). Further detail can be found in 413 

Richard et al. (2017). 414 

The model without temporal variation had 14.8 AIC points more than the model with 415 

fully year-specific detection probability and an effect of the 2001 events on availability 416 

probability. The half-detection distance varied across years between 247 and 611 meters. The 417 

lowest detection probabilities corresponded to years with staffing issues. Availability probability 418 

was 0.57 (± standard error: 0.14) during normal years and 0.87 (± standard error: 0.74) during the 419 

2001 intoxication event, suggesting lower movement rates. Both our new method and the two 420 

capture-recapture analyses yielded the same estimated population trajectory (Fig. 2), indicating 421 

the good performance of the unmarked approach in this case relative to the much more costly 422 

mark-recapture approach. The two-way coefficients of determination (r²) between the year-423 

specific population size estimates from the three methods were both 0.66.  424 

 425 

Application case #2: Mediterranean mouflon 426 

This case study was specifically designed to test the new framework in the field. We wanted to 427 

quantify how the precision of the population abundance estimate increased when we combined 428 

distance sampling, multiple-observer, and time-to-detection in a single framework, compared to 429 
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when we used only one type of detection data. Incidentally, the case study also yielded an 430 

unambiguous demonstration of how combining multiple types of detection data resolved the 431 

above-mentioned weak identifiability issue.  432 

In 2014, Mediterranean mouflons (Ovis gmelini musimon x Ovis sp.) were counted at 433 

three locations from fixed points in the Caroux-Espinouse national hunting and wildlife reserve 434 

(southwestern France; 43°38’N, 2°56’E). The environment was low scrub with forest patches. On 435 

seven or eight occasions (depending on the site), two observers conducted 15-min scans 436 

separated into 3 secondary sessions of 5 minutes. They noted which observer first recorded the 437 

animals, during which scan, and at what distance from their vantage point, yielding 138 different 438 

detection events of mouflon groups. We compared the standard errors of the parameter estimates 439 

when discarding the observer information, the scan information, or both. 440 

Discarding either the time-to-detection information or the double-observer information 441 

led to a two to three-times increase in standard errors (Fig. 3). The time-to-detection information 442 

improved precision slightly more than the double-observer information. Based on these results 443 

we rank the observation protocols by order of increasing precision as follows: distance sampling, 444 

time-to-detection, and multiple observers. Importantly, when we discarded the time-to-detection 445 

information, the availability probability was estimated at boundary one. In other words, we 446 

resolved the weak identifiability issue by collecting time-to-detection information in this case.  447 

 448 

Application case #3: Feral cat 449 

This case study was chosen to illustrate the challenges associated with temporal variation in 450 

nuisance parameters and the adequate performance of the new analytical protocol even when only 451 

distance information is available. Feral cats (Felis silvestris catus) have been introduced to the 452 
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Kerguelen archipelago (southern Indian Ocean); their abundance is a key information for a range 453 

of projects in community ecology and conservation biology. We focused on one study area (the 454 

2.8km-long Pointe Morne transect; 49°22S,70°26E) where the cat population was surveyed on 19 455 

occasions between 2013 and 2016 (and still ongoing) using distance sampling. We considered 456 

only the adult cats and did not use the information about the size of occasional family groups. At 457 

each occasion, observers walked the transect back and forth until they obtained at least 30 cat 458 

sightings, later reduced to 20 sightings. They waited at least 45 minutes between the back and the 459 

forth, and at least two hours before starting again, sometimes the next day. We treated each back-460 

and-forth as a primary occasion sensu our model, but introduced a slight modification in that the 461 

population abundance was constrained to remain constant in the model across the up to 19 back-462 

and-forth walks that together constituted a separate occasion.  463 

Model parameters were allowed to vary across primary occasions using a random-effect 464 

structure implemented with the Gauss-Hermite quadrature within a Nelson-Mead optimization 465 

algorithm (Appendix B). We implemented Gaussian random effects acting on the log-transformed  466 

half detection distance and on the logit-transformed availability probability. We implemented a 467 

basic AIC selection procedure to select between models ��D�.�D�, ��. �.�D�, and ��. �.�. �, 468 

where � and p denote availability and detection probabilities, respectively, a dot denotes a time-469 

constant model, and r denotes a time random effect. Each random effect added a single parameter 470 

to the parameter count for the AIC. Note that random effects are currently not available in the 471 

‘chamois’ user interface. 472 

For comparative purposes we also applied the IPS methodology (Poisson regression) and 473 

the standard distance sampling methodology, which in this case meant pooling data together from 474 

up to 19 primary occasions (back-and-forth walks). We acknowledge that the fact that each 475 

sampling occasion would then last several days violates the assumptions of the distance sampling 476 
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methodology. Our objective was indeed to determine whether this represented an issue or not, by 477 

comparing the results from the standard distance sampling to the results from our new approach. 478 

We obtained better precision with the new framework (Table 3: Distance vs. ��D�.�D�) 479 

because we borrowed information across sampling occasions and we exploited the repeated 480 

survey structure, instead of pooling data across primary occasions. Thus, applying the standard 481 

distance methodology to primary occasions that spanned over several days did not introduce a 482 

major bias, only a loss of precision caused by a loss of information. In this case, contrary to the 483 

other cases we presented above, our new framework thus made it possible to increase precision 484 

by way of more efficient use of information, rather than lose precision by way of adding more 485 

parameters.  486 

The IPS methodology underestimated the population trend compared to the other 487 

methods (Table 3: IPS vs. Distance and ��D�.�D�). This is because of temporal variation in 488 

nuisance parameters, which the IPS methodology did not correct for. Thus, this case study 489 

unambiguously illustrates the importance of accurately representing temporal variation in 490 

nuisance parameters when using population counts to infer population trends. Here, the nuisance 491 

was mostly caused by variation in half-detection distance, but in the previous sections we 492 

illustrated the role of availability to detection as well. 493 

In the present case, we could not separate the probability of availability from the 494 

detection probability (weak identifiability; p was estimated at boundary 1). From the results of 495 

the mouflon case study and the simulations, we recommend either implementing a double 496 

observer protocol, changing the survey area so that it is possible to implement a time-to-detection 497 

protocol, or drastically increasing the number of replicates, in order to be able to identify p and 498 

assess whether temporal variation in p may bias the inference in Table 3.  499 
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DISCUSSION 500 

The methods in this study build on previous efforts to jointly analyze several sources of 501 

“detection data” in studies of population abundance and population trend: distance sampling, 502 

time-to-detection, and multiple observers (Amundson et al., 2014; Chandler et al., 2011; Conn et 503 

al., 2012; Fiske and Chandler, 2011). Motivated by studies into mountain ungulates population 504 

dynamics, we identified a need for an approach that worked for a small number of locations 505 

monitored over long periods of time, when group size influenced detection and the rate of 506 

temporary emigration out of terrain-limited survey areas varied over time. In addition, long-term 507 

ecological monitoring schemes increasingly need to adapt their sampling effort in the face of 508 

variation in financial, institutional, and volunteer support, and as a result there is a need for a 509 

flexible analytical framework. We do not recommend choosing flexibility for the sake of it when 510 

designing a study. But, when variation in sampling effort is inevitable, it is critical that analyses 511 

effectively accommodate it. Furthermore, we implemented a fully expanded version of the 512 

likelihood function, allowing the incorporation of partially observed individual covariates and 513 

individual and temporal random effects, whereas previous approaches used closed-form 514 

likelihood functions based on summary statistics (Fiske and Chandler, 2011). We acknowledge 515 

that this decision is computationally costly: our implementation is at least 10,000 times slower 516 

than a closed-form likelihood. It also requires careful care to avoid local minima in the 517 

likelihood. But with simulations and real case studies we demonstrated that these features could 518 

be critical to control the effect of confounding factors in population trends. Finally, a last source 519 

of concern is that the bias/precision trade-off was not always in favor of our method (Fig. 1). 520 

However, our simulation studies clearly showed that there are situations in which our method was 521 

the only one to yield unbiased results about population trend, because the assumptions and data 522 

requirements of simpler approaches were not met (Table 2).  Application case #2 (mouflon), 523 
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which we specifically designed to test the new approach in the field, also clearly demonstrated 524 

that our new method solved a weak identifiability issue, namely made it possible to separate the 525 

availability and detection probabilities which otherwise would have been confounded. When 526 

availability and detection covary through time, we need to separate them to avoid biases in 527 

population trend estimates.  528 

In our view, the loss of precision caused by the increased number of parameters in our method 529 

relative to the IPS does not prevent the use of the method in real-life management cases, 530 

especially when the loss of precision is taken into consideration at the sampling design stage. We 531 

however recommend applying both the IPS methodology and our new method, maybe in a 532 

dashboard-like suite of indicators of population change. Discrepancies between the IPS and the 533 

new method would make it compelling that population trend estimation remains a difficult task 534 

when the data are sparse at the beginning of a long-term program. These discrepancies would 535 

quantify either the biasing effect of confounding factors, or the loss of precision associated with 536 

the increased number of parameters in our new method. It is also possible to perform a 537 

simulation-based statistical power analysis, as implemented in the “chamois” R-package 538 

(Appendix B), to plan ahead the sampling design and determine when the results from the new 539 

method are expected to reach statistical significance depending on the biological parameters.  540 
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TABLES 784 

Table 1: Notation for the ‘chamois’ class of models 785 

Notation Meaning 

g�,	,� Total number of animal groups observed during the uth visit to site k in year (or 

other time unit) t 

f�,	 Total number of animal groups using site k in year t 

��,	,� Probability that a group is available for detection during the uth visit, following 

the “open distance” parameterization of (Chandler et al., 2011; Sollmann et al., 

2015). 

.�,	,/,�,1��, �� Detection probability by observer o during secondary session v of visit u, for a 

group of size g at distance d from the observer. In practice we use either using 

the half-normal function with spread parameter H�,	,/,�,1(half-detection 

distance) or a histogram-like piecewise function. 

��,	 Number of visits to site k in year t 


�,	,� Number of secondary sessions during visit u 

��,	,� Number of observers during visit u 

�D��|E� Distribution of distances to the observer, including both the animals that 

eventually are detected, and the animals that are not detected, within site k. In 

our framework, this term is meant to accommodate the typically irregular 

shape of the survey sites and the potential offset of the observers’ position 

relative to the centroid of the sites. It is thus directly informed by the user 

rather than estimated. More generally, this term could be used to introduce 

variation in the population density among the sites. 
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 �D��|E, F, G� Distribution of group sizes in site k, during visit u. This includes both detected 

and undetected groups. In practice, we used a one-inflated negative-binomial 

distribution with parameters ��,	,�, ��,	,�, and ��,	,� respectively for the 

proportion of groups of size 1 (solitary animals), the average size of groups of 

size >1, and the shape parameter of the negative-binomial distribution of 

groups of size >1. 

 786 

  787 
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Table 2: Simulation study of the bias in simpler methods over 20 replicates. ‘IPS’ stands for the 788 

Poisson regression of population counts. ‘N-mixture’ means that we fit a separate N-mixture 789 

model for each year using function pcount in R-package unmarked (Fiske and Chandler, 2011). 790 

‘Distance’ denotes the standard distance methodology: function ds in R-package Distance (Miller, 791 

2015) applied to each year × site combination separately. ‘Non-expected trend’ means that the 792 

estimated population trend was positive (whereas the true simulated one was negative).  ‘Type I 793 

error’ means that the positive trend was statistically significant. ‘Type II error’ means that the P-794 

value of the population trend was above 0.05, meaning that no definitive conclusion about 795 

population trend would have been reached. ‘Trend RMSE’ is the % root mean squared error of 796 

the estimated rate of population decline (log scale). 797 

 IPS N-mixture Distance New method 

Non-expected trend 98% 42% 0% 2% 

Type I error 54% 20% 0% 0% 

Type II error 46% 42% 6% 16% 

Trend RMSE >100% 85% 35% 15% 

 798 

  799 
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Table 3: Results of the feral cat case study. � and p denote availability and detection 800 

probabilities, respectively, a dot denotes a time-constant model, r denotes a random effect (acting 801 

at the primary occasion scale and implemented as described in Appendix B). ‘Distance’ denotes 802 

the standard distance methodology: function ds in R-package Distance (Miller, 2015) applied to 803 

each sampling occasion separately. ‘IPS’ denotes the Poisson regression of population count 804 

against time. ΔAIC is the difference in Akaike points between the focal and preferred model. A 805 

hyphen indicates a quantity that could not be estimated. ΔAIC was not computed for Distance 806 

and IPS because the different treatment of the constant terms in the likelihoods prevented the 807 

comparison of AIC values.  808 

Model ΔAIC 

Log-scale temporal trend in abundance 

(month-1) 

��D�.�D� 0 -0.045 (CI -0.056, -0.021) 

��. �.�D� 1.72 -0.045 (CI -0.050, -0.038) 

��. �.�. � 15.98 -0.020 (CI -0.025, -0.014) 

Distance - -0.052 (CI -0.071, -0.033) 

IPS - -0.026 (CI -0.034, -0.018) 

 809 

  810 
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FIGURE LEGENDS 811 

Fig. 1: Quantification of the loss of precision in a scenario without any variance in nuisance 812 

parameters. Probability of not detecting an annual rate of change (increase or decrease, at 813 

random) of 5% over 6 years, for various scenarios of detection probability p and availability 814 

probability φ using our new method. The grey shading darkens when the probability of type II 815 

error increases. The bold line is the 5% contour (right of the line, the probability of type II error is 816 

lower than 5%). The white-dashed lines correspond to the 5% contour for the population index 817 

methodology (if these white-dashed lines are absent then the probability to detect the trend was 818 

always >95% using the index). X-axis: number of repetitions. Y-axis: number of survey sites. The 819 

framed plots indicate situations that correspond to a 40% coefficient of variation, typical of 820 

mountain ungulate monitoring, even if the CV tends to get smaller than that with more replicates 821 

(Loison et al., 2006). The same figure for the probability that a 10% annual rate of change over 822 

three years was detected with a 5% risk threshold are provided in Figs. A1-3.  823 

 824 

Fig. 2: Comparison of estimated chamois abundance in the Bazès study area, with the Arnason-825 

Schwarz-Gerard model fitted to resighting data from marked animals (‘A-S-G’), with a 10 age-826 

class population model with demographic rates estimated from individual-based data 827 

(‘reconstruction’), and with our new method.  828 

 829 

Fig. 3: Comparison of the standard errors from our new method using various combinations of 830 

distance sampling (‘Dist’), time-to-detection (‘Scans’) and double-observer (‘DbObs’), in the 831 

mouflon case study. ‘G1’, ‘G2’, ‘G3’ stands for the log of the number of undetected animal 832 

groups in each of three survey sites, ‘π’ is the proportion of groups of size 1 (logit-scale intercept 833 

and effect of site 1). ‘σ’ is the shape parameter of the negative-binomial distribution of group 834 
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sizes >1, ‘μ’ is its mean, ‘p’ is the group detection probability (logit scale intercept, effect of log-835 

transformed group size and of site 1), and ‘φ’ is the availability probability. Asterisks indicate 836 

missing standard errors because the estimate was at boundary 1, i.e., weak identifiability. 837 

 838 
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