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Abstract

Background: Kernel density estimation (KDE) is a major tool in the movement ecologist toolbox that is used to
delineate where geo-tracked animals spend their time. Because KDE bandwidth optimizers are sensitive to temporal
autocorrelation, statistically-robust alternatives have been advocated, first, data-thinning procedures, and more
recently, autocorrelated kernel density estimation (AKDE). These yield asymptotically consistent, but very smoothed
distributions, which may feature biologically unrealistic aspects such as spilling beyond impassable borders.

Method: I introduce a semi-parametric variant of AKDE designed to extrapolate more realistic home range
shapes by incorporating movement mechanisms into the bandwidth optimizer and into the base kernels. I
implement a first approximative version based on the step selection framework. This method allows
accommodating land cover selection, permeability of linear features, and attraction for select landscape features
when delineating home ranges.

Results: In a plains zebra (Equus quagga), the reluctance to cross a railway, the avoidance of dense woodland,
and the preference for grassland when foraging created significant differences between the estimated home
range contours by the new and by previous methods.

Conclusion: There is a tradeoff to find between fully parametric density estimators, which can be very realistic
but need to be provided with a good model and adequate environmental data, and non-parametric density
estimators, which are more widely applicable and asymptotically consistent, but whose details are bandwidth-
limited. The proposed semi-parametric approach attempts to strike this balance, but I outline a few areas of
future improvement. I expect the approach to find its use in studies that compare extrapolated resource
availability and interpolated resource use, in order to discover the movement mechanisms that we need to
improve the extrapolations.

Keywords: Movement ecology, AKDE, Temporal autocorrelation, Step selection function, Resource selection,
Point process pattern, Semiparametric

Introduction
Many researchers use kernel density estimators (KDE) to
extrapolate where a geo-tracked animal spends its time,
often using the 95% extrapolated isopleth as the home
range contour [1–3]. KDE work by approximating the
stationary utilization distribution p(r) of the animal, i.e.,
its time budget with respect to location r, with a sum of

“kernels”, i.e., unimodal distributions κ centered around
each recorded location {ri} [4, 5].

p̂ r; rif g; σBð Þ ¼ 1
N

XN
i¼1

κ r; ri; σBð Þ ð1Þ

The parameter σB, termed the bandwidth, controls the
spread of each kernel around each recorded location,
and therefore ultimately the degree of smoothing of the
resulting distribution [4, 6, 7]. A small bandwidth yields
a distribution with numerous peaks around each cluster
of recorded locations; a large bandwidth smooths out
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these peaks and yields a more spread-out distribution [2,
5]. The choice of an appropriate bandwidth is therefore
critical, and indeed usually trumps the influence of the ac-
tual shape of the kernels, i.e., the analytical form of func-
tion κ [4]. At least three categories of optimal bandwidth
selection routines have been developed to inform and
automatize this decision [8], but, because of temporal
autocorrelation in movement data [9–11], only one, the
reference function approximation, is recommended for
animal tracking applications [12]. In the reference func-
tion approximation approach, one optimizes the band-
width by minimizing an approximated mean integrated
square error criterion (MISE).

MISE σBð Þ ¼
Z

Ω
pREF rð Þ−p̂ r; rif g; σBð Þj j2 dr

� �
ð2Þ

pREF(r) is the reference function, usually chosen for its
mathematical properties. In a non-approximate MISE,
there should be a p(r) term instead of pREF(r), but, since
p(r) is the unknown we want to estimate, we need to re-
place it with the reference function. Ω represents the
domain of possible locations, the ∫ ∙ dr notation denotes
integration over one realization of the stochastic move-
ment process in space, and the 〈∙〉 notation denotes inte-
gration over all realizations of the movement process.
If Eq. 2 did not account for the temporal autocorrel-

ation structure of the movement process, it would intro-
duce a bias in the bandwidth estimate, that can severely
impedes comparative inference [7, 9, 11–15]. For ex-
ample, the optimizer would converge towards a zero
bandwidth when the sampling resolution would increase
or the amount of temporal autocorrelation in the animal
movement would increase, yielding increasingly smaller
home ranges [12]. The amount of bias depends on both
the sampling resolution and the movement rates of the
animal. There are two known ways to deal with temporal
autocorrelation in Eq. 2. First, one may subsample the
data so that successive records are approximatively inde-
pendent [9, 16]. The recommended best practice is to
keep one record every 3τ where τ is the autocorrelation
time (the rate at which the proximity between two re-
cords declines with the time lag between them). I here-
after refer to this as “robust KDE” (KDEr). The other
way to deal with temporal autocorrelation is to keep all
the data in, but specify a temporal autocorrelation model
in the kernels that make up p̂ and in the reference func-
tion, yielding a different MISE that is minimized by a
different value of the bandwidth [12]. This approach is
termed “autocorrelated kernel density estimation”
(AKDE). In both cases, the approximation of p(r) by
pREF(r) still leads to a “reference function approximation
bias” [17]. This bias is usually positive. It can be

corrected a posteriori [17], in which case I use the rec-
ommended notation “c”, e.g., AKDEc.
Both these robustizing protocols increase the band-

width compared to standard or naive KDE. The KDEr
option also requires the user to discard potentially
massive amounts of data. As a consequence, the result-
ing distribution, although statistically robust and asymp-
totically consistent, may look oversmoothed and
biologically irrelevant [16, 18]. For example, the 95% iso-
pleth might intersect impassable barriers such as coast-
lines [19]. The issue of boundaries is indeed recurrent in
KDE applications, including in other fields than animal
tracking data analysis (review in [20, 21]). For home
range estimation, the most common response is to clip
the distributions at known barriers [19]. This intuitive
practice is equivalent to introducing a dose of mechan-
ism in the otherwise fully nonparametric KDE method-
ology. By specifying where to clip and how to
redistribute the weight, we in effect inform the model
that the barrier was unpassable. However, instead of pro-
viding that information in an ad hoc way at the very end
of the process, we could uptake it from the start. The
MISE would then become less sensitive to an increase in
bandwidth that would otherwise have caused the kernel
distributions to spill beyond the barrier, yielding a differ-
ent optimal bandwidth. We would also incorporate the
barrier into the reference function, making it more real-
istic, and thereby suppressing the reference function ap-
proximation bias. Lastly, we would apply the effect of
the barrier to each kernel, yielding an estimated
utilization distribution that is truncated at the barrier by
construct. More generally, in addition to barriers, we
can incorporate in this way any movement mechanism
that can be formalized using a step selection function
[22, 23], e.g., land cover selection [22] and permeability
of linear features like roads [24].

Material and methods
Step 1: fitting a mechanistic movement model
At time t, the position rt of the animal was assumed to
be drawn from a step selection kernel gu made of the
product of an availability function ga, conditioned on the
movement path prior to t, Rt − 1, and especially the last
known position, rt − 1, and of a weight function W, both
defined over the movement domain Ω [22, 23, 25].

gu rt jRt−1ð Þ ¼ Kt
−1W rt jRt−1; tð Þga rtjRt−1ð Þ ð3Þ

Kt is a scaling constant so that gu sums to one.
The availability function ga was modelled using the

Ornstein-Uhlenbeck process (OU), a continuous-time sto-
chastic movement model that represents home range be-
havior as a tendency to revert back to a mean location
following random deviations from that mean [26]. The
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weight function W described environmental interactions:
selection of some land covers over others, attraction or re-
pulsion towards fixed landscape features such as human
settlements, and barrier permeability, i.e., the rate at which
animals avoid crossing linear features such as roads and
rivers [25]. Following established practice [22, 27, 28], the
analytical form of the weight function W was:

log W ðrtjRt−1; tÞ ¼ xðrtÞT � αþ δðrt jrt−1ÞT � λ ð4Þ

x(rt) describes the environment at location rt. The kth

elements of x(rt) (k = 1, … K1) contains a 0 or 1 coding for
the presence of land cover type k at location rt. The next
K2 elements contain the distances from rt to fixed land-
scape features (or the value of continuous environmental
covariates such as climate or vegetation density). δ(rt| rt −
1) is a vector containing a 1 in the lh cell if a barrier of type
l is crossed when going straight from rt − 1 to rt. Note that
this straight-line permeability model is valid only for small
steps that make longer detours extremely unlikely.
The model parameters are included in vectors α, the se-

lection coefficients, and λ, the permeability coefficients.
The kth element of α (1 < k ≤K1) quantifies how much land
cover type k is preferred over land cover type 1. The lth
element of λ quantifies the reluctance to cross linear fea-
tures of type l, zero meaning that the linear feature has no
effect on movement. Both α and λ were considered con-
stant through time and space in the present application.
For the sake of simplicity, and because my focus here

was on the post-fitting treatment of α and λ estimates,
rather than on the estimation itself, I used a relatively
fast but approximate procedure to estimate the parame-
ters in W. Following Johnson, Hooten & Kuhn [29], I
reformulated the movement model as a space-time point
process [30, 31]. This meant that the availability function
ga was approximated by a Brownian availability window
at each time step. However, in the post-fitting treatment,
I used the Ornstein-Uhlenbeck model for ga as an-
nounced above. This means that different contradictory
models were in practice used to estimate the weight
function and the availability function. The detail of the
space-time point process implementation is provided in
Additional file 2.

Step 2: bandwidth optimization
To incorporate environmental interactions, I replaced
the kernels of Eq. 1 by weighed multivariate Gaussian
distributions [20, 21].

p̂ rð Þ ¼ 1
N

XN
i¼1

KB
i
−1
W rjRið Þφ r; ri; σBð Þ ð5Þ

φ(r, ri, σB) denotes the multivariate Gaussian distribu-
tion of mean ri and variance-covariance matrix σB, and

KB
i is a scaling constant so that each kernel sums to one

(more details in Additional file 1). Following Fleming et
al. [12], I simplified Eq. 5 using σB = σB ∙ σ0, where σ0 is
the variance-covariance matrix of the availability func-
tion. This means that the direction of the smoothing
was driven by the anisotropy of the movement process.
Importantly, these kernels feature a simplistic perme-

ation model that imply a straight-line move from r to ri
(Eq. 4). In the zebra case study below, the violation of that
straight-line assumption was almost without consequence,
because the σB value was moderate and the linear feature
exhibited no convolution at all, meaning that even if the
path from r to ri was not straight, the chance to cross the
linear feature was similar to that of a straight move. How-
ever in other applications, researchers may need to con-
sider alternative jackknifing methods, e.g., diffusive
permeation kernels [32]. In addition, with Eq. 5 we as-
sume a regular redistribution of the discounted weight
across the whole availability domain. In applications where
the animals remain near the linear features when they en-
counter them [19], alternative redistribution rules may be
warranted, e.g., reflected kernels [20].
Next, for the reference function, I also used weighted

multivariate Gaussian distributions, summed over re-
corded locations to represent the expected equilibrium
distribution of the movement process.

pREF rð Þ ¼ 1
N

XN
i¼1

K0
i
−1
W rjRið Þφ r;μ0; σ0ð Þ ð6Þ

K0
i is a scaling constant so that each element of the

reference function sums to one.
Like Eq. 5, Eq. 6 features a simplistic permeation

model that assumes a straight line move from μ0 to r.
However, now that simplistic permeation model is ap-
plied to the whole home range. Any movement bottle-
neck, e.g., a constrained corridor between two sections
of the home range, would be overly discounted in the
resulting reference function. In the zebra case study, we
did not have to deal with any such feature. However, in
other applications, users may have to consider alterna-
tive formulations. Individual-based simulations (IBS; see
“Zebra case study” below) could in this case prove par-
ticularly useful to generate a “pilot estimate” to use in-
stead of Eq. 6. In addition to offering a straightforward
way to incorporate above-mentioned movement bottle-
necks into the reference function, IBS can be set up so
that the simulation step length is short enough that the
straight-line permeability model remains realistic at all
stages of the simulations. However, this option is not im-
plemented yet, and probably warrants further investiga-
tion pertaining to sensitivity to simulation parameters
(simulated duration, step lengths, etc.).
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When using Eq. 5, 6, there is an analytical form for the
MISE, derived in Additional file 1. These details expand
on the proof of Fleming et al. [12] demonstrating how
temporal autocorrelation is incorporated into the KDE
framework. The resulting MISE optimization algorithm is
however prohibitively time-consuming. Thus, pending al-
gorithmic improvement, the new approach remains
mostly theoretical and exploratory. I however developed a
faster-running simplified version in the following section.

Simplified version
Because the MISE optimization was so prohibitively
time-consuming, I simplified the protocol by by-passing
Step 2 entirely, or more precisely, replacing Step 2 with
the corresponding step of the AKDE analytical protocol
[33]. In other words, the bandwidth is optimized while
taking temporal autocorrelation into account, but with-
out taking environmental interactions into account. The
weights from Step 1 are then only applied when eventu-
ally computing the distribution (Step 3). I propose the
notation E-AKDE for the full version where environ-
mental interactions are incorporated in Step 2, and
SE-AKDE for the simplified version where environmen-
tal interactions are not incorporated at Step 2. Import-
antly, because of the assumption from the straight-line
permeability model, E-AKDE is not compulsorily always
more reliable than SE-AKDE.

Step 3: computing the kernel density and correcting for
the remaining reference function approximation bias
From the estimated σB, I computed isopleths of p̂ðrÞ
using Eq. 5. I then applied the reference function bias
correction routine of Fleming and Calabrese [17] to the
isopleths, but only when implementing SE-AKDE, hence
the SE-AKDEc notation hereafter. When implementing
E-AKDE, I considered that by changing the reference
function (Eq. 6), I got rid of the reference function ap-
proximation bias. This is certainly a strong assumption
that was however supported by the empirical results.

Zebra case study and comparison with alternatives to
KDE
I analyzed data collected from a plains zebra (Equus
quagga) in and near Hwange national park, Zimbabwe
(26.861E, − 18.624 N). The study individual (individual
local identifier: Ganda) was monitored between Jan 2011
and Sept 2012 with a collar-mounted GPS that recorded
one location every hour [34]. I rescaled the recent
Hwange vegetation map [35] at a 150m resolution and
pooled vegetation classes into 4 categories to reduce com-
puting time for this illustration case. Other landscape fea-
tures known to influence zebra space use included water
holes, a railway with adjacent road that marks the

northern border of the park, and a town. These were all
included in the step selection model (Eq. 3).
I compared four variants of the KDE methodology: a

naïve reference function-based bandwidth optimizer that
did not account for temporal autocorrelation (KDE), the
robustized approach where the data were subsampled
before analysis (KDEr), the AKDE approach where the
autocorrelation structure was incorporated in the
reference function (AKDEc), and finally the new
methods (E-AKDE and SE-AKDEc). For KDE and
KDEr I used the kde2d function in R-package MASS.
The position autocorrelation time τ required to sub-
sample the data for KDEr was estimated from the
ctmm.fit routine in R-package ctmm [33]. For
AKDEc, I used the akde function in ctmm within the
recommended analytical protocol [33]. For E-AKDE,
the algorithm and mathematical justification are de-
scribed (with words) in Additional file 1. For
SE-AKDEc, I used the AKDE bandwidth but then ap-
plied the environmental interaction weights when
computing the distribution.
I also implemented three non-KDE methodologies.

First, I used the asymptotic distribution of the fitted
Ornstein-Uhlenbeck model to draw the ellipses that
most closely approximated the home range and core
area. Second, I implemented the movement-based kernel
density estimator (MKDE), in which the kernels are re-
placed by step selection functions, i.e., the gu(ri + 1| Ri)
estimated at Step 1 [19, 36]. MKDE, like the Brownian
bridge, computes the probability that a location was
used between records [36]. The method focuses on one
realization of the movement path and on the process un-
certainty around the interpolated path between records
[37]. By contrast, KDE extrapolators average the
utilization distribution across realizations of the move-
ment path. Lastly, I implemented an individual-based
simulation procedure (IBS) [38, 39] to generate 1000
1-month-long tracks with one record per hour, each
track starting from a randomly selected recorded loca-
tion, and moving stochastically according to the model
described in Eq. 1. This yielded a cloud of 720,000 simu-
lated records, from which I computed the density of
records per pixel, thereby obtaining a rasterized cumula-
tive utilization distribution that quantified the time
budget under the fitted mechanistic movement model.
For each estimator, I computed the home range

area (95% isopleth) and the core area (50% isopleth),
as well as the home range scale computed as the root
mean square distance of the distribution to its cen-
troid. I also computed the “amplitude” of the core
area and of the home range as the longest distance
between two points on the isopleth. These represent
different ways to measure the home range. In particu-
lar, the home range area of the asymptotic OU

Péron Movement Ecology            (2019) 7:16 Page 4 of 8



distribution is proportional to the movement variance
or home range scale.

Results and discussion
Comparison between KDE variants in the zebra case study
The standard KDE yielded the smallest home range area
and amplitude among all KDE variants (Fig. 1 and Table 1).
As reviewed in the introduction, this small estimated
home range size is partly caused by an unwanted property
of the standard KDE in the presence of temporal autocor-
relation [7, 9, 11–15]. The KDEr version indeed yielded a
much larger estimated home range. AKDEc yielded a
smaller home range estimate than KDEr, with a notably
smaller core area leading to a large estimated home range

scale. Neither AKDEc nor KDEr provided any information
about landcover selection or reluctance to cross the rail-
way (Fig. 1), as expected by construction. The most visu-
ally compelling effect of using SE-AKDEc and E-AKDE
was that the space to the east of the railway was weighted
down compared to AKDEc and KDEr. In addition, the
core area was markedly irregular in shape, reflecting the
avoidance of the densest woodland cover type and the
preference for pure grassland. The composition of the
home range remained similar across all methodologies. In
particular, while c.30% of the raw data was recorded in
grassland, only 1–6% of the estimated home range was es-
timated to be grassland. This result stems from the scar-
city and patchiness of grassland in the area, meaning that

Fig. 1 The 50% (dark grey) and 95% (light grey) isopleths of the utilization distribution of a plains zebra, as estimated by the 8 estimators in this
study. The dashed diagonal line represents a railway with adjacent road that marks the border of the national park where the zebra was
captured. KDE, KDEr and AKDEc represent three strategies to choose the bandwidth of the kernel density estimator. MKDE is a bridge-based
interpolation of the movement path. SE-AKDEc and E-AKDE are the result of the new developments in this study, incorporating step-selection
functions into the AKDE framework. IBS depicts a cloud of 720.000 simulated locations from a fitted step-selection model. The asymptotic OU
distribution represents the spread of a simple Ornstein-Uhlenbeck advection-diffusion model fitted to the data
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any extrapolation was bound to incorporate more
non-grassland than grassland. In addition, bushland and
woodland are sometimes actively selected by zebras, e.g.,
after a predation event [34], meaning that the fitted land-
cover selection model did not strictly discount these land-
cover types and that it might be interesting to fit a
time-varying landcover selection model in this context.
Lastly, the estimated E-AKDE bandwidth (0.20) was
smaller than that of AKDE (0.31) yielding a smaller esti-
mated home range from E-AKDE than SE-AKDEc. The
decrease in bandwidth suggests that the methodology suc-
cessfully took up the information that some of the move-
ment variance was caused by resource selection, not
stochastic diffusion. These empirical results overall sug-
gest that the new reference function suppressed the refer-
ence function approximation bias.

Extrapolation/interpolation, parametric/non-parametric
As outlined by several authors previously, MKDE does
not measure the same thing as KDE [33, 36]. MKDE im-
plements an interpolation. The potential for confusion has
led some authors to recommend against using the termin-
ology of “utilization distribution” for MKDE and other in-
terpolative methods, and to restrict the use of that phrase
to extrapolated distributions [33]. Accordingly, in the
zebra case study, the “home range” area was much smaller
when estimated with MKDE than with other methods
(Table 1, Fig. 1). The isopleth of the MKDE distribution
quantifies the process uncertainty around the interpolated
path, and the interpolated time budget during the study.
By contrast, KDEr and AKDEc are designed to delineate
asymptotically consistent, statistically robust, conservative
buffers around activity centers.

Like KDEr and AKDEc, SE-AKDEc, and E-AKDE ex-
trapolate the utilization probability. But, contrary to KDEr
and AKDEc, they include a dose of mechanism (Eq. 1)
into the base kernels of the extrapolation (Eq. 5). This
yields what can be termed a semi-parametric extrapola-
tion. Compared to AKDEc, the dose of mechanism modi-
fies what the method considers a plausible realization of
the movement process. The objective is to combine the
asymptotic consistence of AKDE with the biological real-
ism of fully parametric methodologies. One of the main
criticism of fully parametric extrapolations [40] is indeed
their sensitivity to the goodness of fit of the underlying
mechanistic movement model, which the semi-parametric
approach partly relaxes. In terms of biological inference,
SE-AKDEc, and E-AKDE extrapolate the potentially ac-
cessible resources under a known set of movement rules
and under the constraint that the movement paths must
all pass through the recorded locations. Comparing ex-
trapolations from different models can help infer new
movement mechanisms or assess model parsimony. Fi-
nally, compared to the IBS approach, SE-AKDEc and
E-AKDE provide three key advantages: no tuning parame-
ters, full conditioning on the recorded locations, and
asymptotic consistency. As highlighted above, a way to
better articulate the IBS approach with E-AKDE would be
to use IBS to generate the pilot estimate upon which to
base the reference function.

Conclusion
The key message is that it should soon be possible to
make the statistically robust, asymptotically consistent al-
ternatives to KDE less bandwidth-limited than they cur-
rently are, and make them yield more realistic, less ovoid

Table 1 Home range area, home range scale, and home range composition for the same zebra study individual, using the various
home range estimation methods. The home range scale is the root mean squared distance to the distribution centroid. The
amplitude is computed as the longest distance between two points on a contour. IBS stands for individual-based simulation, other
notation like in the main text

Core area
size (50%
isopleth)
[km2]

Home
range size
(95%
isopleth)
[km2]

Home
range
scale
[km]

Core area
amplitude
(50%
isopleth)
[km]

Home range
amplitude
(95%
isopleth)
[km]

Proportion of
grassland in
core area (50%
isopleth) [%]

Proportion of
grassland in
home range
(95% isopleth)
[%]

Proportion of
woodland in
core area (50%
isopleth) [%]

Proportion of
woodland in
home range (95%
isopleth) [%]

MKDE 4.3 46.9 14.1 13.8 29.1 24.3% 3.1% 21.6% 66.9%

KDE 12.9 117.3 14.0 12.7 31.1 6.1% 1.5% 68.2% 69.4%

KDEr 81.0 332.6 14.2 16.7 32.0 2.3% 1.6% 76.4% 64.3%

AKDEc 62.8 264.7 18.5 17.1 31.6 2.1% 1.3% 73.3% 66.8%

SE-
AKDEc

38.5 229.5 14.0 22.1 32.6 12.3% 7.1% 10.9% 8.8%

E-AKDE 29.0 190.4 14.0 21.7 31.1 13.3% 6.3% 11.5% 9.8%

IBS 28.1 162.4 10.7 21.4 32.7 11.9% 10.0% 0.0% 2.0%

Asymp.
OU

88.6 383.0 14.0 12.1 25.1 6.2% 7.3% 28.3% 24.0%
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home range shapes. I introduced new semi-parametric
methodologies, based on the step-selection framework
[23]. I outlined several avenues for future improvement. I
expect E-AKDE to function as part of an iterative process
by which semi-mechanistic extrapolations are compared
to realized resource use until no significant improvement
can be made by adding new movement rules in the ex-
trapolation process. The point would be to give less im-
portance to the time spent at a given location, and more
importance to the ratio between availability and use.

Additional files

Additional file 1: Appendix A: Description of the E-AKDE bandwidth
optimizer. (PDF 271 kb)

Additional file 2: Appendix B: Additional method elements: The space-
time point process likelihood and Approximate routine to determine
whether a linear feature is crossed. (PDF 241 kb)

Abbreviation
AKDE: autocorrelated kernel density estimator; E-AKDE: autocorrelated kernel
density estimator with environmental interactions.; KDE: kernel density
estimator; MKDE: movement-based kernel density estimator
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