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Abstract. BPMN is suitable to model not only intra-organization work-
flows but also inter-organization collaborations. There has been a great
effort in providing a formal semantics for BPMN, and then in building
verification tools on top of this semantics. However, communication as-
pects are often discarded in the literature. This is an issue since BPMN
has gained interest outside its original scope, e.g., for the IoT, where the
configuration of communication modes plays an important role. In this
paper, we propose a formal semantics for a subset of BPMN, taking into
account inter-process communication and parametric verification with
reference to communication modes. As opposed to transformational ap-
proaches, that map BPMN into some formal model such as transition
systems or Petri nets, we give a direct formalization in First-Order Logic
that is then implemented in TLA+ to enable formal verification. Our
approach is tool supported. The tool, as well as the TLA+ theories, and
experiment models are available online.

Keywords: BPMN · Formal Semantics · Collaboration · Communication · Ver-
ification · TLA+· Tool.

1 Introduction

BPMN collaboration diagrams [1] provide an efficient way to describe how several
business entities, each one with its own internal process, can interact with one
another to reach objectives. The BPMN standard defines an execution semantics
using natural language, that could be qualified as semi-formal. This leaves room
for interpretation and hampers formal analysis of the models. This issue has
been addressed in the last decade in different proposals for a formalization of
the BPMN execution semantics (see Section 4), some of them with available

? This work was supported by project PARDI ANR-16-CE25-0006.
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Fig. 1: BPMN subset being supported, with types used in the formalization (e.g.,
MSE stands for Message Start Events and SE for Start Events). Due to lack of
space, the support for boundary events is presented in [13].

tools. But these proposals often leave apart features related to communication.
Meanwhile, BPMN is gaining interest as a modeling language for the Internet of
Things (IoT) [4, 18], There, the communication between the nodes of the system,
and the configuration of different communication modes, is an issue.

Contribution. The contribution of this paper is twofold. First, (1.) we pro-
vide a formalization of a subset of BPMN execution semantics that supports
interaction and that is parametric with reference to the properties of the commu-
nication between participants, and (2.) we support this formalization with tools
that automatically perform the verification of correctness properties for BPMN
collaboration models.

As far as (1.) is concerned, we chose to define a direct First-Order Logic (FOL)
semantics for BPMN. Instead of using an intermediary formal model, e.g., Petri
nets or process algebra, this choice of a simple yet expressive framework enables
one to get a formal semantics that is amenable to implementation in differ-
ent formal frameworks while still being close to the semi-formal semantics of
the standard (hence it can be related to it). We implement our FOL semantics
in TLA+ [17] as a set of TLA+ theories. This corresponds to a pure syntactic
transformation of FOL into the corresponding TLA+ fragment. Our semantics
supports the six point-to-point communication models that exist when consid-
ering local and global message ordering, and it is easily extensible. As far as the
subset of BPMN is concerned, we have first based our choice on the analysis of
the 825 BPMN processes available in the BIT process library, release 2009 [12],
given in [15]. We have then taken more constructs into account, mainly relative
to our focus on communication: creation and termination of processes using mes-
sages, message-related tasks and intermediary events, and event-based gateways.
The whole subset of the notation that we support is given in Figure 1.

With respect to (2.), our approach relies on two steps. First, one uses the
fbpmn tool that we have developed to get a TLA+ representation of the model
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Fig. 2: Travel agency case study (slightly adapted from an example in [7]).

to verify. Then, one uses the TLC model-checker from the TLA+ tool-suite to
perform the verification. The properties of interest are encoded in the TLA+

theories we have implemented. They include usual correctness properties for
workflows as well as ones (proposed more recently [7]) that are more specific to
BPMN. Both tools are open source and freely available online. Furthermore, the
models we have used for evaluation in Section 3 are also available online. To get
the tools and the models, see the fbpmn repository [3].

Due to space considerations, we assume the reader has a basic knowledge of
the BPMN notation. We refer to [1] if this is not the case.

Case study. Figure 2 presents the case study we use to illustrate some defini-
tions and to perform verification. The outcomes of verification on more examples,
including ones from the literature, are synthesized in Section 3.

The collaboration involves two participants: a customer and a travel agency.
The agency sends offers to the client. The client may accept or decline the offers
(loop using two exclusive gateways). Once it has accepted an offer, the client
will not be ready to receive another one and it proceeds to the exchange part
relative to the offer of interest. On the other side, the agency (through the use of
a parallel gateway) is able both to send other offers and begin the exchange part:
at the parallel gateway a token is generated both to get back to offer sending and
to wait for the booking. This case study is interesting for several reasons. First,
due to the agency behavior, the collaboration is possibly unsafe: one can have
an unbounded number of tokens on the right of the parallel gateway. Second,
observe that the partners do not agree on the order of confirmation wrt. ticket
reception. Depending on the communication model, this may cause a deadlock.

Overview. The formal part of the paper is developed in Section 2, with Sub-
sections 2.1 and 2.2, respectively addressing the presentation of the model un-
derlying the semantics, and then the semantics itself. The implementation of
the semantics in TLA+, verification, and evaluation are then presented in Sec-
tion 3. This section also includes a short introduction to the TLA+ language
and verification framework. Related work is given in Section 4, and we end with
conclusions and perspectives in Section 5.
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2 Formal Semantics

In this section, we first present the model on which we base the definition of the
communication-parametric semantics for BPMN collaborations. This model is
used to represent collaborations as typed graphs. In a second step, we present
the semantic itself. It follows the "token game" of the standard [1, Ch. 13], with
a notion of state that evolves with activation and completion of graph nodes.

2.1 A Typed Graph Representation of BPMN Collaborations

In our work, a BPMN model is seen as a typed graph (Def. 1), where nodes and
edges are associated to types corresponding to the BPMN syntax (see Fig. 1):
TNodes = {AT , RT , ST , SP ,NSE,MSE, CMIE, TMIE,NEE, TEE,MEE,
AND, OR, XOR, EB, P} and TEdges = {NSF , CSF , DSF , MF}. The hierar-
chical structure of collaborations, with processes and sub-processes is dealt with
by using specific types for nodes, P and SP , and a relation denoting contain-
ment, R. From our example, Figure 2, we would then have two nodes of type P
(say n1 for Customer, n2 for Travel Agency) with their respective contents related
by R, e.g., a node n3 for Make Travel Offer of type ST with n3 ∈ R(n2).

Definition 1 (BPMNGraph). A BPMN graph is a tuple Ĝ= (N, E, M, catN ,
catE, source, target, R, msgt) where N is the set of nodes, E (N ∩ E = ∅) is
the set of edges, M is the set of message types, catN : N → TNodes gives the type
of a node, catE : E → TEdges gives the type of an edge, source/target : E → N
give the source/target of an edge, R : N{SP,P} → 2N∪E gives the set of nodes
and edges which are directly contained in a container (process or sub-process),
and msgt : E

MF →M gives the message associated to a message flow.

Notation. We use NT (resp. ET ) to denote the subset of nodes (resp. edges) of
type T, e.g., NT = {n ∈ N | catN (n) ∈ T}. By abuse of notation, we may write
N t instead of N{t}, e.g., NNSE instead of N{NSE}. We use for catE the same
simplified notations as for catN .

We then define some auxiliary functions that will be used in the semantics.

Auxiliary functions. For a graph Ĝ= (N, E, M, catN , catE , source, target, R,
msgt), we introduce the following auxiliary functions:

– in/out : N → 2E give the incoming/outgoing edges of a node, in(n) = {e ∈
E | target(e) = n} and out(n) = {e ∈ E | source(e) = n}.

– a family of functions inT (resp. outT ) : N → 2E is used to combine in
(resp. out) with ET , inT (n) = in(n) ∩ ET and outT (n) = out(n) ∩ ET .

– procOf : N → NP gives the container process of a given node, procOf (n) = p
if and only if n ∈ R+(p), with R+ being the transitive closure of R.

It is desirable to enforce that models respect some well-formedness rules
before performing verification. Due to a lack of space, we give the rules that we
impose (most coming from [1]) for a BPMN graph to be well-formed in [13].
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2.2 A FOL Semantics for BPMN Collaborations

In order to maintain traceability with the standard, we use a token-based ap-
proach. The movement of tokens is based on node types. We define an execution
model based on two predicates (St, Ct) for each node type which correspond to,
respectively, the enabling of the node to start its execution, and the enabling
of the node to complete its execution. Some nodes only have a start transition
(e.g., end events), and others only have a completion transition (e.g., gateways).
The definition of these predicates relies a notion of state of the BPMN Graph.

Definition 2 (State). The state of a BPMN graph is given by a couple of
functions s = (mn,me), mn : N → N and me : E → N, that associate a number
of tokens to nodes (gateways are always 0) and edges, respectively. The set of all
states of a BPMN graph is denoted by States.

Definition 3 (Initial state). The initial state of a BPMN graph, denoted by
so = (mn0,me0), associates a token to the NSE nodes of the processes, all
the other nodes and edges being unmarked: ∀e ∈ E,me0(e) = 0, and ∀n ∈
N,mn0(n) = 1 if ∃p ∈ NP , n ∈ NNSE ∩R(p), and 0 otherwise.

The properties of communication between two participants (process nodes)
for a given type of message are abstracted with two predicates, send and receive.
These predicates specify when a communication action is enabled and the effect
of this communication. For instance, with FIFO asynchronous communication
(NetworkFifo, Section 3.3), messages must be delivered in the order they were
sent. Thus send(p1, p2,m) is always enabled and receive(p1, p2,m) is true only
if m is the oldest message and thus the next one to be delivered. Observe that
the value of these predicates evolve as the processes send and receive messages.

Definition 4 (Communication Model). The communication model is char-
acterized by two predicates send/receive : NP ×NP ×M→ Bool.

The formal execution semantics is given in Tables 1 and 2. We consider that
mn and m′n (resp. me and m′e) denote two successive markings of a node (resp.
edge) in the execution semantics. 4 is a predicate that denotes marking equality
but for nodes and edges given as parameter, 4(X) means "nothing changes but

for X": 4(X)
def
≡ ∀n ∈ N \X,m′n(n) = mn(n) ∧ ∀e ∈ E \X,m′e(e) = me(n).

Starting and terminating. The behavior of an NSE node is defined only
through completion: it consumes one token and generates one token on all its
outgoing sequence flow edges. If it is the initial node of a process p, it activates it
by generating a token on p. For a sub-process, it is the SP starting predicate that
will perform activation (see below). The behavior of an NEE node is defined
only through a starting predicate: it is enabled if it has at least one token on one
of its incoming edges, that is added to the node. A TEE node is also defined
only through a starting predicate: it is enabled if it has at least one token on one
of its incoming edges, then it drops down all the remaining tokens of the process
or sub-processes to which it belongs.
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Table 1: FOL semantics (part 1 – events)

E
ve
nt
s

n ∈ NNSE

Ct(n)
def
≡ (mn(n) ≥ 1) ∧ (m′n(n) = mn(n)− 1)
∧ (∀e ∈ outSF (n), (m′e(e) = me(e) + 1))
∧ ((∃p ∈ NP , n ∈ R(p) ∧ (mn(p) = 0) ∧ (m′n(p) = 1)
∧4 ({n, p} ∪ outSF (n)))
∨ (∃p ∈ NSP , n ∈ R(p) ∧4({n} ∪ outSF (n))))

n ∈ NMSE

St(n)
def
≡ (mn(n) = 0) ∧ (m′n(n) = 1)
∧ (∃e ∈ inMF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)
∧ receive(procOf (source(e)), procOf (n),msgt(e))
∧4 ({n, e}))

Ct(n)
def
≡ (mn(n) = 1) ∧ (m′n(n) = mn(n)− 1)
∧ (∃p ∈ NP , n ∈ R(p) ∧ (mn(p) = 0) ∧ (m′n(p) = 1)
∧ (∀e ∈ outSF (n), (m′e(e) = me(e) + 1))
∧4 ({n, p} ∪ outSF (n)))

n ∈ NTMIE

St(n)
def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)
∧ (∃e′ ∈ outMF (n), (m′e(e

′) = me(e
′) + 1)

∧ send(procOf (n), procOf (target(e′)),msgt(e
′))

∧ ∀e” ∈ outSF (n), (m′e(e”) = me(e”) + 1)
∧4 ({e, e′} ∪ outSF (n))))

n ∈ NCMIE

St(n)
def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)
∧ (∃e′ ∈ inMF (n), (me(e

′) ≥ 1) ∧ (m′e(e
′) = me(e

′)− 1)
∧ receive(procOf (source(e)), procOf (n),msgt(e

′))
∧ (∀e” ∈ outSF (n), (m′e(e”) = me(e”) + 1))
∧4 ({e, e′} ∪ outSF (n))))

n ∈ NNEE St(n)
def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)

∧ (m′n(n) = mn(n) + 1) ∧4({n, e}))

∀n ∈ NTEE

St(n)
def
≡ (m′n(n) = 1)
∧ (∃e ∈ inSF (n), (me(e) ≥ 1))

∧ (∃p ∈ N{P,SP}, n ∈ R(p)
∧ (∀nn ∈ ((R+(p) ∩N) \ {n}),m′n(nn) = 0)
∧ (∀ee ∈ (R+(p) ∩ E),m′e(ee) = 0)
∧4 (R+(p)))

n ∈ NMEE

St(n)
def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)
∧ (∃e′ ∈ outMF (n), send(procOf (n), procOf (target(e′)),msgt(e

′))
∧ (m′e(e

′) = me(e
′) + 1)

∧ (m′n(n) = mn(n) + 1) ∧4({n, e, e′})))
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Table 2: FOL Semantics (part 2 – gateways and activities)
G
at
ew

ay
s

n ∈ NXOR
Ct(n)

def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)
∧ (∃e′ ∈ outSF (n), (m′e(e

′) = me(e
′) + 1))

∧4 ({e, e′}))

n ∈ NAND
Ct(n)

def
≡ (∀e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1))
∧ (∀e′ ∈ outSF (n), (m′e(e

′) = me(e
′) + 1))

∧4 (inSF (n) ∪ outSF (n))

n ∈ NOR

Ct(n)
def
≡ (In+(n) 6= ∅) ∧ (∀e ∈ In+(n), (m′e(e) = me(e)− 1))
∧ (∀ez ∈ In−(n), ∀ee ∈ (PreE(n, ez) \ ignoreE(n)), (me(ee) = 0)
∧ (∀nn ∈ (PreN (n, ez) \ ignoreN (n)), (mn(nn) = 0)))

∧ ((∃Outs ⊂ (outSF (n) ∩ E{NSF,CSF}), (Outs 6= ∅)
∧(∀e ∈ Outs, (m′e(e) = me(e) + 1) ∧4(In+(n) ∪Outs))
∨ (∃e ∈ outDSF (n), (m′e(e) = me(e) + 1) ∧4(In+(n) ∪ {e}))))

n ∈ NEB
Ct(n)

def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)

∧ (∃e′ ∈ outSF (n), ∃e” ∈ inMF (target(e′)), (me(e”) ≥ 1)
∧ (m′e(e

′) = me(e
′) + 1) ∧4(e, e′)))

A
ct
iv
it
ie
s

n ∈ NAT

St(n)
def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)

∧ (m′n(n) = mn(n) + 1) ∧4({n, e}))
Ct(n)

def
≡ (mn(n) ≥ 1) ∧ (m′n(n) = mn(n)− 1)
∧ (∀e ∈ outSF (n), (m′e(e) = me(e) + 1)) ∧4({n} ∪ outSF (n))

n ∈ NST

St(n)
def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)
∧(m′n(n) = mn(n) + 1) ∧4({n, e}))

Ct(n)
def
≡ (mn(n) ≥ 1) ∧ (m′n(n) = mn(n)− 1)
∧ (∀e ∈ outSF (n), (m′e(e) = me(e) + 1))
∧ (∃e′ ∈ outMF (n), send(procOf (n), procOf (target(e′)),msgt(e

′))
∧ (m′e(e

′) = me(e
′) + 1) ∧4({n, e′} ∪ outSF (n)))

n ∈ NRT

St(n)
def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)
∧(m′n(n) = mn(n) + 1) ∧4({n, e}))

Ct(n)
def
≡ (mn(n) ≥ 1) ∧ (m′n(n) = mn(n)− 1)
∧ (∀e ∈ outSF (n), (m′e(e) = me(e) + 1))
∧ (∃e′ ∈ inMF (n), (me(e

′) ≥ 1) ∧ (m′e(e
′) = me(e

′)− 1)
∧ receive(procOf (source(e′)), procOf (n),msgt(e

′))
∧4 ({n, e′} ∪ outSF (n)))

n ∈ NSP

St(n)
def
≡ (∃e ∈ inSF (n), (me(e) ≥ 1) ∧ (m′e(e) = me(e)− 1)

∧ (m′n(n) = mn(n) + 1)
∧ (∀nse ∈ (NSE ∩R(n)), (m′n(nse) = mn(nse) + 1))
∧4 ({e, n} ∪ (NSE ∩R(n))))

Ct(n)
def
≡ (mn(n) ≥ 1) ∧ (m′n(n) = 0)
∧ (∀e ∈ R(n) ∩ E, (me(e) = 0))
∧ (∃nee ∈ (NEE ∩R(n)), (mn(nee) ≥ 1))
∧ (∀nn ∈ R(n) ∩N, (mn(nn) ≥ 1⇒ nn ∈ NEE))
∧ (∀nn ∈ (R(n) ∩NEE), (m′n(nn) = 0))
∧ (∀e ∈ outSF (n), (m′e(e) = me(e) + 1))
∧4 ({n} ∪ (R(n) ∩NEE) ∪ outSF (n))
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The behavior of an activity node AT is defined by a starting and a completion
predicate. The node is started by the arrival of at least one token on one of
its incoming edges. Completion is realized by adding one token on each of its
outgoing edges. The behavior of a SP node extends the one of an AT node with
additional conditions: when enabled, a sub-process adds a token to the start
event it contains. It completes when at least one end event it contains has some
tokens and neither one of its edges nor one of its non end event nodes is still
active (i.e., owning a token).

Communication. The communication elements (MSE, TMIE, CMIE,MEE,
ST , RT ) require additional conditions for starting and completing due to the
presence of sending/reception behaviors. When enabled by a token on one of
their incoming edges, TMIE, MEE, and ST send a message on their outgoing
message flow and a token on all their outgoing sequence flows. MSE, CMIE,
and RT require a message offer on one of their incoming message flows. They
receive the message and produce tokens on their outgoing edges. MSE and RT
have both starting and completion transitions while CMIE is an instantaneous
event with only a starting transition.

Gateways. Gateways are atomic and define only the completion behavior. An
AND gateway is ready to complete if it has at least one token on all its incoming
edges. It completes by removing one token on each of these edges, and producing
one on all its outgoing edges. An XOR gateway is ready to complete if it has at
least one token on one of its incoming edges. It completes by removing this token,
and producing one on one of its outgoing edges, depending on conditions. Since
we abstract from data, we proceed choosing non-deterministically the concerned
edge. An EB gateway behaves as an XOR gateway in that it consumes and
produces a token from and to only one edge. However, its completion relies on
the presence of external message triggers. The outgoing edge activation depends
on the enabledness of the CMIE or RT which is the target of this edge. The
activation of an OR gateway g is more complex [1, Chap. 13]. It is activated if
(1) it has at least one token on one of its incoming edges, and (2) for each node
or edge x such that there is a path – that does not pass through g – from x
to an unmarked incoming edge of g, there must be also a path – that does not
pass through g – from x to a marked incoming edge of g. This is illustrated in
Figure 3 where gateway g cannot be activated since there is a path from marked
epre to unmarked e− and no path from epre to some marked e+. The OR gateway
completes by adding a token either to all its outgoing edges whose condition it
true, or else to its default sequence flow edge. Again, since we abstract from

g∃

∄
e+

e-epre

Fig. 3: Non activable inclusive gateway. It has to wait for the token on epre.
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data, we chose non-deterministically to add a token either to a combination (1
or more) of the outgoing non default edges, or to the default edge.

To formalize the semantics of an OR gateway we use several functions:

– PreN : N ×E → 2N gives the predecessor nodes of an edge such that npre is
in PreN (n, e) if there is a path from npre to e that never visits n. Accordingly,
PreE : N × E → 2E gives predecessor edges.

– In− : N → E gives the unmarked incoming edges of a node, In−(n) =
{e− ∈ inSF (n) | me(e

−) = 0}.
– In+ : N → E gives the marked incoming edges of a node, In+(n) =
{e+ ∈ inSF (n) | me(e

+) ≥ 1}.
– ignoreE : N → 2E gives the predecessor edges of the marked incoming edges

of a given node: ignoreE(n)
def
≡

⋃
e+∈In+(n)

PreE(n, e
+).

– ignoreN : N → 2N gives the predecessor nodes of the marked incoming
edges of a given node: ignoreN (n) =

⋃
e+∈In+(n)

PreN (n, e+).

3 Implementation & Verification

In this section, we present our encoding of the FOL semantics in TLA+. This al-
lows one to easily parameter the properties of the communication, and to benefit
from the efficient TLC model checker to automatically verify collaborations.

3.1 The TLA+ Specification Language and Verification Framework

TLA+ [17] is a formal specification language based on untyped Zermelo-Fraenkel
set theory for specifying data structures, and on the temporal logic of actions
(TLA) for specifying dynamic behaviors. TLA+ allows one to specify symbolic
transition systems with variables and actions. An action is a transition predi-
cate between a state and a successor state. It is an arbitrary first-order pred-
icate with quantifiers, set and arithmetic operators, and functions. In an ac-
tion, x denotes the value of a variable x in the origin state, and x′ denotes
its value in the next state. Functions are primitive objects in TLA+. The ap-
plication of function f to an expression e is written as f [e]. The expression
[x ∈ X 7→ e] denotes the function with domain X that maps any x ∈ X
to e. The expression [f except ![e1] = e2] is a function that is equal to the
function f except at point e1, where its value is e2. A system specification is
usually a disjunction of actions. Fairness, usually expressed as a conjunction of
weak or strong fairness on actions, or more generally as an LTL (Linear Tempo-
ral Logic) property, ensures progression. The TLA+ toolbox, freely available at
http://lamport.azurewebsites.net/tla/tla.html, contains the TLC model
checker, the TLAPS proof assistant, and various other tools.

http://lamport.azurewebsites.net/tla/tla.html
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3.2 Encoding of FOL Semantics in TLA+

The expression and action fragment of TLA+ contains FOL, and the encoding
of the semantics in TLA+ is straightforward (459 lines of TLA+ formulae). The
resulting theories are available in the fbpmn repository [3] under theories/tla.

Module PWSTypes defines the abstract constants that correspond to the node
and edge types. Module PWSDefs specifies the constants that describe a BPMN
graph (Definition 1): Node (for N), Edge (for E), Message (for M), CatN (for
catN ), CatE (for catE), ContainRel (for R). . . This module also defines auxil-
iary functions such as inT . Module PWSWellFormed encodes the well-formedness
predicates for BPMN graphs. Last, module PWSSemantics contains the seman-
tics. It defines the variables for the marking: nodemarks (∈ [Node→ Nat]) and
edgemarks (∈ [Edge → Nat]). Then it contains a translation of the FOL for-
mulas given in Tables 1 and 2. Each rule yields one TLA+ action. For instance,
the St predicate of the SP nodes becomes:

subprocess_start(n) ,
CatN [n] = SubProcess
∧ ∃e ∈ intype(SeqF lowType, n) : edgemarks[e] ≥ 1
∧ edgemarks′ = [edgemarks except ![e] = edgemarks[e]− 1]

∧ nodemarks′ = [nn ∈ domain nodemarks 7→
if nn = n then nodemarks[nn] + 1
else if CatN [nn] ∈ StartEventType ∧ nn ∈ ContainRel[n]

then nodemarks[nn] + 1
else nodemarks[nn]]

∧ Network!unchanged

The Next predicate specifies a possible transition between a starting state
and a successor state. It is a disjunction of all the actions. The full specification is
then, as usual in TLA+, Init∧�[Next]vars ∧Fairness, where Init specifies the
initial state (Def. 3), and �[Next] specifies that Next (or stuttering) is verified
along all the execution steps. In our case, Fairness is a temporal property that
ensures that any permanently enabled transition eventually occurs. This means
that no process may progress forever while others are never allowed to do so if
they can. Moreover, we include in the fairness that no choice is infinitely often
ignored: if a XOR, OR, or EB gateway is included in a loop, the fairness forbids
the infinite executions that never use some output edges.

3.3 Communication as a Parameter

One of the objectives of our FOL semantics is to be able to specify the communi-
cation behavior as a parameter of the verification. To achieve this, all operations
related to communication are isolated in a Network module. This module is a
proxy for several implementations that correspond to communication models
with different properties, such as their delivery order.

We provide six communication models which differ in the order messages can
be sent or received, and are all the possible point-to-point models when consid-
ering local ordering (per process) and global ordering (absolute time). They are
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formally defined in [5] and informally are: unordered (modelled by a bag of mes-
sage), first-in-first-out between each couple of processes (modelled by an array
of queues), fifo inbox (each process has an input queue where senders add their
messages), fifo outbox (each process has an output queue from where receivers
fetch messages), global fifo (a unique shared queue), and RSC (realizable with
synchronous communication, modelled as a unique message slot that forces alter-
nation of send and receive tasks). If the collaboration is sound, no message is left
in transit, and RSC and synchronous communication yield the same behaviors.

The state of the communication model is specified with a variable net, whose
content depends on the communication model. The communication actions are
two transition predicates send and receive which are true when the action is
enabled. These actions take three parameters, the sender process, the destination
process and the message. Their specification depends on the communication
model. For instance, NetworkFifo specifies a communication model where the
delivery order is globally first-in first-out: messages are delivered in the order
they have been sent. Its realization is a queue and the two predicates are:

send(from, to,m) , net′ = Append(net, 〈from, to,m〉)
receive(from, to,m) , net 6= 〈〉 ∧ 〈from, to,m〉 = Head(net) ∧ net′ = Tail(net)

3.4 Mechanized Verification

A specific BPMN diagram is described by instantiating the constants in PWSDefs
(Node, Edge. . . ) from the BPMN collaboration. This is automated using our
fbpmn tool. Regarding the well-formedness of the BPMN diagram, the predicates
from PWSWellFormed are assumed in the model. Before checking a model, The
TLA+ model checker checks these assumptions with the instantiated constants
that describe the diagram, and reports an error if an assumption is violated.
Otherwise, this proves that the diagram is well-formed.

The TLA+ model checker, TLC, is an explicit-state model checker that checks
both safety and liveness properties specified in LTL. This logic includes operators
� and ♦ that respectively denote that, in all executions, a property F must
always hold (�F ) or that it must hold at some instant in the future (♦F ). TLC
builds and explores the full state space of the diagram to verify if the given
properties are verified. These properties are generic properties related to any
Business Process diagram, or specific properties for a given diagram. Some of
the generic properties are safe collaboration, sound collaboration and message-
relaxed sound collaboration [7]. A collaboration is safe if no sequence flow holds
more than one token:

�(∀e ∈ ESF ,me(e) ≤ 1) (1)

A collaboration is sound if all processes are sound and there are no undeliv-
ered messages. A process is sound if there are no token on its inside edges, and



12 S. Houhou, S. Baarir, P. Poizat, P. Quéinnec

one token only on its end events.

SoundProc(p)
def
= ∀e ∈ R(p) ∩ ESF ,me(e) = 0

∧ ∀n ∈ R(p) ∩N, (mn(n) = 0 ∨ (mn(n) = 1 ∧ n ∈ NEE))

Soundness
def
= ♦(∀p ∈ NP , SoundProc(p) ∧ ∀e ∈ EMF ,me(e) = 0) (2)

A collaboration is message-relaxed sound (3) if it is sound when ignoring
messages in transit, i.e., when ignoring the Message Flow edges. This is the
same as (2) without the second conjunction.

Other generic properties are available, such as the absence of undelivered
message or the possible activation which states there does not exist a task node
(Abstract Task, Send Task, Receive Task) that is never activated in any execu-
tion. From a business process point of view, it means that there are no tasks in
the diagram that are never used. This is expressed as ∀n ∈ NT : EF(mn(n) 6= 0)
(TLC can check for the invalidity of the negation of this CTL formula).

Last, the user can also define business model properties concerning a spe-
cific diagram. For instance, one can check that the marking of a given node is
bounded by a constant (i.e., �(nodemarks[”ConfirmBooking”]) ≤ 1), or that
the activation of one node necessarily leads to the activation of another node
(�(nodemarks[”BookTravel”] 6= 0⇒ ♦(nodemarks[”OfferCompleted”] 6= 0)).

When the model checker finds that a property is invalid, it outputs a counter-
example trace that we animate on the BPM graphical model to help the user
understand it. As TLC uses a breadth-first algorithm, this trace is minimal for
safety properties.

3.5 Experiments

Experiments were conducted on a laptop with a 2.1 GHz Intel Core i7 processor
(quad core) with 8 GB of memory. Results are presented in Table 3. The first
column is the reference of the example in our archive. The characteristics of a
model are: number of participants, number of nodes (incl. gateways), number of
flow edges (sequence or message flows), whether the model is well-balanced (for
each gateway with n diverging branches we have a corresponding gateway with n
converging branches) and whether it includes a loop. The communication model
is asynchronous (bag), fifo-ordered between each couple of processes (fifo pair),
globally fifo (fifo all), or synchronous-like (RSC). The results of the verification
then follow. First, data on the resulting transition system are given: number
of states, number of transitions, and depth (length of the longest sequence of
transitions that the model checker had to explore). For each of the three correct-
ness properties presented above, we indicate if the model satisfies it. Lastly, the
accumulated time for the verification of the three properties is given. Our tool
supports more verifications (see Table 4) and can be easily extended with new
properties. We selected these three ones since they are more BPMN specific [7].

Table 3 presents the results for a selection from our repository [3] for a variety
of gateways and activities. These illustrative examples include realistic business
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Table 3: Experimental Results.
ref. Characteristics Com. LTS size validity total

proc. nodes (gw.) SF/MF B L model states trans. depth (1) (2) (3) time
001 2 17 (2) 14/3 X × bag 93 173 25 X X X 5.17s

fifo pair 85 161 21 X × × 5.19s
RSC 77 147 19 X × × 5.09s

002 2 16 (2) 13/3 X × bag 83 154 24 X X X 4.93s
fifo pair 75 142 20 X × × 4.74s
RSC 67 128 18 X × × 4.48s

003 1 14 (6) 16/0 × X none 41 59 15 X X X 2.89s
006 2 20 (4) 18/5 × X bag 470 966 43 × × X 8.98s

fifo all 522 932 40 × × × 8.58s
RSC 247 420 38 × × × 6.58s

007 1 8 (2) 7/0 × × none 44 73 15 × × × 2.52s
008 1 11 (2) 9/0 × × none 48 77 19 × X X 2.60s
009 2 12 (2) 9/1 × × bag 170 395 19 × × × 4.86s
010 2 15 (2) 11/1 × × bag 186 423 23 × × X 5.32s
011 2 15 (2) 11/1 × × bag 100 209 21 × X X 4.73s
012 1 15 (8) 17/0 X X none 71 137 15 X X X 3.16s
013 1 17 (8) 21/0 X X none 407 1049 15 X X X 5.93s
018 1 19 (8) 25/0 X X none 4631 15513 18 X X X 28.46s
015 2 14 (2) 10/2 × × bag 68 117 11 X × × 4.67s
016 2 14 (2) 10/2 × × bag 36 53 11 X X X 4.25s
017 1 32 (12) 36/0 × × none 93 141 37 X X X 4.03s
020 4 39 (6) 34/8 × X bag 4648 14691 54 X X X 53.05s
020 fifo all 2564 6872 54 X X X 28.25s
020 RSC 1224 3271 54 X × × 18.77s

process models (001 and 002 two client-supplier models, 006 from Figure 2,
017 from [15], and 020 from [9]), and models dedicated to specific concerns:
termination end events and sub processes (007–011 from [7]), inclusive gateways
(003, 012, 013 and 018), exclusive and event-based gateways (015 and 016).

A first conclusion is that verification is rather fast: the verification of one
property generally takes just a few seconds per model, the longest being for
model 020 that takes up to 53s of accumulated time for the three properties (5s
for the construction of the state space). Experiments also show the effect of the
communication model on property satisfaction (models 1, 2, 6, 20), the use of
TLA+ fairness to avoid infinite loops (12, 13, 18, 20), and the use of terminate
end events combined with user given constraints [3] to deal with unsafety (6).

4 Related Work

The formalization of the BPMN execution semantics, and on a wider scale the
formal study of business processes, is a very active field of research. We here focus
on recent work that provides tool support for the verification of collaboration
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diagrams and communication features in BPMN [10, 14, 20, 9, 7, 8, 16]. We
add [11] due to its role as a seminal paper and [21, 22] as recent representatives for
the formal model they use. Table 4 gives a synthetic presentation of a comparison
between these proposals and ours.

Some works are based on transformations, while others provide a direct se-
mantics. The former rely on an intermediary model, while the later have the
benefit to provide a direct link between BPMN constructs and the verification
formalism. Our work is in this line. Further, the choice of FOL lets one implement
the semantics in different tools, e.g., TLA+ as here or SMT solvers.

As far as the BPMN coverage criteria is concerned, we can observe that we
are among the approaches with a high coverage. To make verification tractable,
we have abstracted from the data and the multi-instance constructs, that are of-
ten related to data. Works taking data into account in verification either require
to bound domains or operate on the basis of configurations (a state and a substi-
tution from variables to closed terms). The former is still subject to state-space
explosion, while the later is closer to animation than to full-fledged verification,
and makes it impossible to verify a model for any possible initial value of the
data. A perspective of our work is to rely on symbolic techniques instead [19].

The work in [9] provides a very rich formal semantics with animation capaci-
ties but does not enable verification in the large. Most of the work, still, support
the verification of BP correctness properties or, at least, all-purpose formal prop-
erties (reachability, deadlock). The use of FOL to define the semantics, and its
implementation in TLA+, made it possible for us to implement quite easily these
correctness checks as temporal logic properties to be checked against the model.

5 Conclusion & Future Work

In this work we have proposed a formalization of a subset of the BPMN ex-
ecution semantics. It supports interaction and is parametric with reference to
the properties of the communication between participants. We have seen in Ta-
ble 3 that these properties can have an effect on the satisfaction of correctness
properties by the collaboration model. Communication-parametric verification
techniques for BPMN are therefore helpful when it comes to use this standard
in contexts such as the IoT [4, 18] where communication may vary. Our proposal
is equipped with open source tools that are freely available and automatically
perform the transformations and verification steps. A direct perspective of this
work is the integration of our proposal as a plug-in of a platform for business
processes that goes beyond modeling, namely ProM [2].

An on-going work is to replace the network theories that specify the commu-
nication model with a more general and versatile solution based on a communi-
cation framework we have developed [6]. This framework allows a large variety of
configurations for the communication model, including which ordering policies
are to be applied per participant, per couples of communicating participants,
using priorities, or bounds on the number of messages in transit.
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Some BPMN features that play a role in full-fledged executable collaboration
have been discarded, in a first step, when selecting a relevant BPMN subset.
This is the case of the support for data and the multi-instances activity, that
are supported for example in [9] to provide the business process designers with
model animation. However, to keep verification tractable, we had to abstract
from these features. Our main perspective goes in this direction, using techniques
from symbolic execution and symbolic transition systems [19] while keeping a
direct semantics, i.e., relatable to the parts of the BPMN informal semantics.
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