K. Benihoud, P. Yeh, and M. Perricaudet, Adenovirus vectors for gene delivery, Curr Opin Biotechnol, vol.10, pp.440-447, 1999.

M. O. Lasaro and H. C. Ertl, New insights on adenovirus as vaccine vectors, Mol Ther, vol.17, pp.1333-1342, 2009.

D. Descamps and K. Benihoud, Two key challenges for effective adenovirusmediated liver gene therapy: innate immune responses and hepatocytespecific transduction, Curr Gene Ther, vol.9, pp.115-142, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01601628

T. A. Smith, N. Idamakanti, M. L. Rollence, J. Marshall-neff, J. Kim et al., Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice, Hum Gene Ther, vol.14, pp.777-87, 2003.

K. Martin, A. Brie, P. Saulnier, M. Perricaudet, P. Yeh et al., Simultaneous CAR-and alpha V integrin-binding ablation fails to reduce Ad5 liver tropism, Mol Ther, vol.8, pp.485-94, 2003.

T. A. Smith, N. Idamakanti, J. Marshall-neff, M. L. Rollence, P. Wright et al., Receptor interactions involved in adenoviral-mediated gene delivery Frontiers in Immunology | www, vol.9, p.124, 2018.

, after systemic administration in non-human primates, Hum Gene Ther, vol.14, pp.1595-604, 2003.

H. Mizuguchi, N. Koizumi, T. Hosono, A. Ishii-watabe, E. Uchida et al., CAR-or alphav integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice, Gene Ther, vol.9, pp.769-76, 2002.

T. Nakamura, K. Sato, and H. Hamada, Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber, J Virol, vol.77, pp.2512-2533, 2003.

E. Vigne, J. Dedieu, A. Brie, A. Gillardeaux, D. Briot et al., Genetic manipulations of adenovirus type 5 fiber resulting in liver tropism attenuation, Gene Ther, vol.10, pp.153-62, 2003.

A. L. Parker, S. N. Waddington, C. G. Nicol, D. M. Shayakhmetov, S. M. Buckley et al., Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes, Blood, vol.108, pp.2554-61, 2006.

O. Kalyuzhniy, D. Paolo, N. C. Silvestry, M. Hofherr, S. E. Barry et al., Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo, Proc Natl Acad Sci U S A, vol.105, pp.5483-5491, 2008.

F. Vigant, D. Descamps, B. Jullienne, S. Esselin, E. Connault et al., Substitution of hexon hypervariable region 5 of adenovirus serotype 5 abrogates blood factor binding and limits gene transfer to liver, Mol Ther, vol.16, pp.1474-80, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315859

S. N. Waddington, J. H. Mcvey, D. Bhella, A. L. Parker, K. Barker et al., Adenovirus serotype 5 hexon mediates liver gene transfer, Cell, vol.132, pp.397-409, 2008.

T. Yamaguchi, K. Kawabata, N. Koizumi, F. Sakurai, K. Nakashima et al., Role of MyD88 and TLR9 in the innate immune response elicited by serotype 5 adenoviral vectors, Hum Gene Ther, vol.18, pp.753-62, 2007.

D. M. Appledorn, A. Mcbride, S. Seregin, J. M. Scott, N. Schuldt et al., Complex interactions with several arms of the complement system dictate innate and humoral immunity to adenoviral vectors, Gene Ther, vol.15, pp.1606-1623, 2008.

T. Minamitani, D. Iwakiri, and K. Takada, Adenovirus virus-associated RNAs induce Type I interferon expression through a RIG-I-mediated pathway, J Virol, vol.85, pp.4035-4075, 2011.

K. Doronin, J. W. Flatt, D. Paolo, N. C. Khare, R. Kalyuzhniy et al., Coagulation factor X activates innate immunity to human species C adenovirus, Science, vol.338, pp.795-803, 2012.

S. Worgall, A. Krause, M. Rivara, K. Hee, E. V. Vintayen et al., Protection against P. aeruginosa with an adenovirus vector containing an OprF epitope in the capsid, J Clin Invest, vol.115, pp.1281-1290, 2005.

M. J. Mcconnell, X. Danthinne, and M. J. Imperiale, Characterization of a permissive epitope insertion site in adenovirus hexon, J Virol, vol.80, pp.5361-70, 2006.

T. Shiratsuchi, U. Rai, A. Krause, S. Worgall, and M. Tsuji, Replacing adenoviral vector HVR1 with a malaria B cell epitope improves immunogenicity and circumvents preexisting immunity to adenovirus in mice, J Clin Invest, vol.120, pp.3688-701, 2010.

A. Lanzi, G. B. Youssef, M. Perricaudet, and K. Benihoud, Anti-adenovirus humoral responses influence on the efficacy of vaccines based on epitope display on adenovirus capsid, Vaccine, vol.29, pp.1463-71, 2011.

T. Kawai, O. Adachi, T. Ogawa, K. Takeda, and S. Akira, Unresponsiveness of MyD88-deficient mice to endotoxin, Immunity, vol.11, pp.80086-80088, 1999.

Q. Sun, L. Sun, H. Liu, X. Chen, R. B. Seth et al., The specific and essential role of MAVS in antiviral innate immune responses, Immunity, vol.24, pp.633-675, 2006.

E. Vigne, I. Mahfouz, J. Dedieu, A. Brie, M. Perricaudet et al., RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection, J Virol, vol.73, pp.5156-61, 1999.

N. Raddi, F. Vigant, O. Wagner-ballon, S. Giraudier, J. Custers et al., Pseudotyping serotype 5 adenovirus with the fiber from other serotypes uncovers a key role of the fiber protein in adenovirus 5-induced thrombocytopenia, Hum Gene Ther, vol.27, pp.193-201, 2016.

J. Crouzet, L. Naudin, C. Orsini, E. Vigne, L. Ferrero et al., Recombinational construction in Escherichia coli of infectious adeno vi ral genomes, Proc Natl Acad Sci U S A, vol.94, pp.1414-1423, 1997.

A. Galaup, C. Magnon, V. Rouffiac, P. Opolon, D. Opolon et al., Full kringles of plasminogen (aa 1-566) mediate complete regression of human MDA-MB-231 breast tumor xenografted in nude mice, Gene Ther, vol.12, pp.831-873, 2005.

A. C. Bradshaw, L. Coughlan, A. M. Miller, R. Alba, N. Van-rooijen et al., Biodistribution and inflammatory profiles of novel penton and hexon double-mutant serotype 5 adenoviruses, J Control Release, vol.164, pp.394-402, 2012.

Z. C. Hartman, A. Kiang, R. S. Everett, D. Serra, X. Y. Yang et al., Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo, J Virol, vol.81, pp.1796-812, 2007.

D. M. Appledorn, S. Patial, A. Mcbride, S. Godbehere, N. Van-rooijen et al., Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo, J Immunol, vol.181, pp.2134-2178, 2008.

M. Sudres, S. Ciré, V. Vasseur, L. Brault, D. Rocha et al., MyD88 signaling in B cells regulates the production of Th1-dependent antibodies to AAV, Mol Ther, vol.20, pp.1571-81, 2012.

G. L. Rogers, M. Suzuki, I. Zolotukhin, D. M. Markusic, L. M. Morel et al., Unique roles of TLR9-and MyD88-dependent and -independent pathways in adaptive immune responses to AAV-mediated gene transfer, J Innate Immun, vol.7, pp.302-316, 2015.

R. Yang, F. M. Murillo, M. J. Delannoy, R. L. Blosser, W. H. Yutzy et al., B lymphocyte activation by human papillomavirus-like particles directly induces Ig class switch recombination via TLR4-MyD88, J Immunol, vol.174, pp.7912-7921, 2005.

S. Kang, D. Yoo, M. Kim, J. Song, M. Park et al., MyD88 plays an essential role in inducing B Cells capable of differentiating into antibody-secreting cells after vaccination, J Virol, vol.85, pp.11391-400, 2011.

R. Uchiyama, B. Chassaing, B. Zhang, and A. T. Gewirtz, MyD88-mediated TLR signaling protects against acute rotavirus infection while inflammasome cytokines direct Ab response, Innate Immun, vol.21, pp.416-444, 2015.

A. K. Heer, A. Shamshiev, A. Donda, S. Uematsu, S. Akira et al., TLR signaling fine-tunes anti-influenza B Cell responses without regulating effector T cell responses, J Immunol, vol.178, pp.2182-91, 2007.

J. Zhu, X. Huang, and Y. Yang, The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice, J Clin Invest, vol.119, pp.2388-98, 2009.

B. Hou, P. Saudan, G. Ott, M. L. Wheeler, J. M. Kuzmich et al., Selective utilization of toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response, Immunity, vol.34, pp.375-84, 2011.