J. Diani, M. Brieu, and J. M. Vacherand, A damage directional constitutive model for Mullins effect with permanent set and induced anisotropy, Eur. J. Mech. Solids A, vol.25, pp.483-496, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00189900

J. Diani and P. Gilormini, Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials, J. Mech. Phys. Solids, vol.53, pp.2579-2596, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00096941

R. Diaz, J. Diani, and P. Gilormini, Physical interpretation of the Mullins softening in a carbon-black filled SBR, Polymer, vol.55, pp.4942-4947, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061054

A. E. Ehret, M. Itskov, and H. Schmide, Numerical integration on the sphere and its effect on the material symmetry of constitutive equations -a comparative sutdy, Int. J. Numer. Methods Eng, vol.81, pp.189-206, 2010.

S. Göktepe and C. Miehe, A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage, J. Mech. Phys. Solids, vol.53, pp.2259-2283, 2005.

A. G. James, A. Green, and G. M. Simposon, Strain energy functions of rubber. ICharacterization of gum vulcanizates, J. Appl. Polymer Sci, vol.19, pp.2033-2058, 1975.

S. Kawabata, M. Matsuda, K. Tei, and H. Kawai, Experimental survey of the strain energy density function of isoprene rubber vulcanizate, Macromolecules, vol.14, pp.154-162, 1981.

G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier et al., A theory of network alteration for the Mullins effect, J. Mech. Phys. Solids, vol.50, pp.2011-2028, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01004954

J. E. Mark, Rubber elasticity, Rubber Chem. Technol, vol.55, pp.1123-1136, 1981.

Y. Merckel, J. Diani, M. Brieu, and J. Caillard, A Mullins softening criterion for general loading conditions, J. Mech. Phys. Solids, vol.60, pp.1257-1264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02410145

C. Miehe, S. Göktepe, and F. Lulei, A micro-macro approach to rubber-like materials. Part I: the non-affine micro-sphere model of rubber elasticity, J. Mech. Phys. Solids, vol.52, pp.2617-2660, 2005.

L. Mullins, Softening of rubber by deformation, Rubber Chem. Technol, vol.42, pp.339-362, 1969.

W. Kuhn and F. Grün, Beziehungen zwischen elastischen konstanten und dehnungsdoppelbrechung hochelastischer Stoffe, Kolloid-Zeitschrift, vol.101, pp.248-271, 1942.

T. C. Mcleish, Tube theory of entangled polymer dyanmics, Adv. Physics, vol.51, pp.1370-1527, 2002.

R. Rastak and C. Linder, A non-affine micro-macro approach to strain-crystallizing rubber-like materials, J. Mech. Phys. Solids, vol.111, pp.67-99, 2018.

I. H. Sloan and R. S. Wormersley, Extremal systems of points and numerical integration on the sphere, Adv. Comput. Math, vol.21, pp.107-125, 2004.

M. Tkachuk and C. Linder, The maximal advance path constraint for the homogenization of materials with random network microstructure, Phil. Mag, vol.92, pp.2779-2808, 2012.

L. R. Treloar, Stress-strain data for vulcanised rubber under various types of deformation, Trans. Faraday Soc, vol.40, pp.59-70, 1944.

L. R. Treloar and G. Riding, A non-Gaussian theory for rubber in biaxial strain? I. Mechanical properties, Proc. R. Soc. London, Ser. A, vol.369, pp.261-280, 1979.

E. Verron, Questioning numerical integration methods for microsphere (and microplane) constitutive equations, Mech. Mater, vol.89, pp.216-228, 2015.

E. Verron and A. Gros, An equal force theory for network models of soft materials with arbitrary molecular weight distribution, J. Mech. Phys. Solids, vol.106, pp.176-190, 2017.