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Abstract—Accurate and simple simulation flow model is
useful to make decision at the right time to managsupply chain
or workshop. To do that, different reduction model omplexity
approaches have been proposed. One of them is tosasiate
discrete event model of bottlenecks and continuoumodel of
other work centers according to the theory of consaints. The
continuous approximation is used only do determinenow the
bottlenecks are fed. Different continuous model ha been
proposed in the past. This paper focuses on the assion of
regression trees and neural networks in order to beefit of the
advantages of each other. This approach is used ftie modeling
of a sawmill workshop and the results are compareavith those
obtained previously by using only CART model or netal
network model.

Keywords—Decision tree; CART,; reduced model; neural

network; simulation; supply chain; learning

. INTRODUCTION

The decision making process in internal/externapblu
chains (SC) domain needs to evaluate planning loedsding
scenario. To do that, a simulation flow model i®fuk to
highlight evolution of resources states, work iogress, and
gueues allowing to build a “predictive schedulifig].

This “predictive scheduling” may be called into gtien
when significant events occur on the shop floorisTiact

implies to perform a “reactive scheduling” by using

information on these events collected by the rieat tsystems
[6]. The main difficulty is to exploit this inforntian quickly in
order to take decision [12, 13]. The goal is to aggncritical
resource capacity which are mainly bottlenecks .[2The
theory of Constraints (ToC) consists in managihgha SC by
bottlenecks control [4]. In this case, the evatuatbf material
flow by discrete events simulation model is usefl#].
However, the building of such models is a very claxpask
and lead to problem of scale [11] that is why défe
approaches of reduced/aggregated simulation mogdehias
been proposed [2, 3, 19]. Among these differentragghes,
the using of continuous flow models to approximdigcrete
manufacturing environments is one of the more itigated
[19]. The authors have proposed and compared diftdypes
of continuous models including neural networks (NM] or

classification and regression trees (CART) [17].eJé two
tools are able to extract models directly from dataThe main
advantage of CART is that the resulting model &equential
model which logically combines a sequence of sintpls.
This fact allows to extract knowledge from the mode
However, this type of model presents two main diaskis: the
adaptation of the model to system changes, andwiek
stability of the model structure when different aksts are
considered (two different datasets collected orstivae system
may lead to two very different models).

This paper investigates the association of NN aART
models in order to improve the continuous approsionaof
the reduced part of the simulation model. The nidéa is to
compare the structures of different CART modelshef same
system constructed with different datasets. Thensompart of
these models is preserved when the divergent panes
discarded and replaced by NN models. This appr@atdsted
and compared with the results obtained by using 6N or
CART models on sawmill internal SC case.

The next section presents the reduced model bgildin
strategy. Part 3 is devoted to the considered tridus
application case, when part 4 presents the rebaltsre to
conclude.

. THE REDUCED MODEL

A. Thealgorithm

The main idea of the approach is to determine whiat
(work centers) of the system is essential to maahel which
one is less important. This is performed accordinthe ToC
concept [4] with the goal to reduce the number lefnents,
connections and model calculation in order to reduc
complexity [22]. A literature review of reduction odel
approach can be found in [19]. The reduction maggroach
proposed here is based on the one proposed by Bhanth
Thomas [18] where discrete event models and comiu
models are associated to design the simulation mdde
essential works centers of the model are desciiyedsing
discrete event model when continuous model is used
determine how the essential work center are fead iain



steps of the algorithm are presented figure 1 whleeefirst
ones consist to determine which work centers (W&&drto be
modelled with a discrete event model, considerifg t
manufacturing order (MO) and which ones may be rhede
with a continuous approximation. The last step giray)
consists to design this continuous model and icthne of this
paper.

For this step, the main idea is to exploit the rarm
production data to extract directly and automaltiddlis model

from the dataset. Different continuous models Haaen tested
in the past including regression tree [17] whiclow$ to

extract knowledge form data and neural networks, [19

which are more adaptable to change of the systédms. gaper
proposes to associate these two approaches. Tinegwalis of
this approach are to reduce the modelisation tiynexracting
automatically the continuous part of the model alyefrom

the collected production dataset, and to reducecéineputing
time.
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Figure 1. Reduction model algorithm



. to limit the impact of outliers and has a regulatizn
B. Regressiontree effect.

Classification and regression trees are constititeda
sequence of simple logical tests. If in classifaattrees, the
output corresponding to a pattern is the predictads of the
pattern, in regression tree, the output is the vakle which is
the more likelihood for the pattern and who will Ibee
predicted value of the output [8]. The principlerefiression

tree is to split the dataset in two purer datasetsach node D. Proposed continuous model

beginning from .the root node until leafs. The geab find for As explain previously, the structure of CART models
each node the input to test and the value of tieesponding  depends on the dataset used. The main idea isploitethe
threshold in order to minimize the node impuritefsits two  instability of the CART structure due to the diface between

children and for each leaf, the real value the morgjatasets in order to construct a shorter stablesimod
representative of the considering sub dataset.

e Pruning determines the optimal structure of the
network and allows to avoid overfitting problem.€rTh
pruning procedure used is the one proposed by Teoma
and Suhner [16].

. . ) The work is performed in three steps:
Different algorithms have been proposed to design

regression trees. The considered one, here, iSCART 1.

(Classification and Regression tree) which is basadthe
generalization of the binomial variance called Gaiex [1].

The design of regression trees is a recursive pdrioee
beginning from the root node which is stopped whely one
pattern is associated to each leaf, or if the tsmlitof the sub-
dataset becomes impossible due to the fact thataald node
have identical distribution of predictor variabler if the
maximal number of levels in the tree fixed by desigis
reached, or if an impurity improvement level thi@slfixed by
designer is reached.

Notwithstanding these stop criterions, overfittipgpblem
occurs with resulting tree and a pruning step mhst
performed. This pruning step uses a penalty tepresenting
the number of leafs associated to the same imptaity used
during the design step (Gini). The final tree sibec is
performed by using a cross-validation procedure [1]

A regression tree allows to extract knowledge fidataset
by giving a hierarchy into the influence of inpuariable
considering the input variable associated to eamthe n(the
input variable associated to the test of the roaolens probably
more influent than the input variable associatedtgochild
nodes).

However, the structure of the resulting model dejgseon
the dataset and small variations in the dataset ieag to
structure very different.

C. Neural network

Different artificial NNs have been proposed to solmany
different problems: dynamic system identificatiopattern
classification, adaptive control... Among them, Maler
perceptron (MLP) is the most popular [5]. Differetivation
functions (hyperbolic tangent, sigmoid, linear...)ynee used
for the neurons. In the considered structure, midd=urons use
hyperbolic tangent when output neuron exploitsnadr one.
The design of NN model is performed in three steps:

* Initialization consists to determine the initialt s&f

Constructing of diverse datasets by using bagging
strategy.

2. Learning of diverse CART models on these
diverse datasets.

3. Comparing the diverse CART models. For each
node of the CARTs, a similarity measure is
performed and compared to a threshold. If the
similarity measure is higher to the threshold, the
node is preserved, otherwise the node is discarded.
When this procedure is completed for all nodes, a
resulting CART model is obtain which includes
only nodes which are mainly present in all CART
models.

4. Replacing leafs of this resulting model by NN
models. The learning of these different NN models
is performed on the part of the dataset
corresponding to the results of the tests performed

by the ancestors of the considered leaf.

The value of the threshold used in step 3 is fikete to
90% which signifies that only nodes belonging torenthan
90% of the CART models are preserved.

I1l.  OVERVIEW OF THE SAWMILL

To validate the proposed approach, a reduced diimla
model of a sawmill workshop is built in order tdfhenanagers
in their weekly decision-making Master Productiarthedule
(MPS) process. The goal is to evaluate the effentigs of the
MPS, to maximize the global productivity of the terteck and
so of the workshop, and to find the reason of soomgestions
of the trimmer WC.

A first study has been performed based on a complet
model [14]. This study has allowed to find the lsoteck
which is the last sawmill work center. Moreoveg tieasons of

unexplained congestion phenomena of the trimmer are

identified, these congestion phenomena are reldteda
bottleneck load rate too high (higher than 60%)scAthese
conditions degrade the bottleneck productivity andnust be

weights and biases. The Nguyen Widrow algorithm isavoided by taking the good decisions during the NIR®ess.

used [10],

e Training fits the network output to the data. Thsng
of a robust Levenberg-Marquardt algorithm [15] ato

However, all influent factors on bottleneck prodvuity depend
on the first WC and so, a simulation flow modetssential for
this decision making process. The complete simardathodel
built is not able to respond to this needing duigstprohibitive



modification and computational time, so a redudetligtion
model must be built.

In this section, the sawmill is described from @gesss
point of view. By focusing on the material flowsya linear
parallel flows may be identified for main and sedanry
products. These flows depend also of the variatbriog
dimensions. These facts implies that this processléarly
nonlinear.

This sawmill can be divided into three work centefe
describe the material flows, the trip of a log fridgsentrance to
its exit (sawed in planks) is described. The Calier (figure
2) is the first work center. The log is taken obgrthe input

conveyors RQM1 to RQM3. A scanner MS determine it

dimensions and in function of these dimensions, |t is
driven to conveyors RQM4 or RQM5. These conveyoes a
used as input inventory for the Canter line. Twdasesaws,
the Canter machine and the CSMK saw, transform iotgs
square-shaped parallelepipeds. To shape the fdes sif the
parallelepiped, a production loops and a rotatibro@ are
needed by using RQM6, BT4, and BT5 conveyors aaddf

Secondary products conveying

is stored in RQM7 which constitutes a work in psxe
inventory. The MPS must determine which inventd?@M4,
RQMS5, or RQM7) must fed the canter line. After #econd
passage of the log on the Canter machine, the eduiar
completed and four secondary products (two durhme first
passage and two during the second one) are takeiheu
Canter line by using BT4 or BT5 conveyors towarel $econd
work center, the Kockum line. The parallelepipedtswues on
its road until the MKV saw where it is sawed intoete planks
(main products) which are conveyed to the third kvoenter,
the trimmer line.

The second work center (figure 3) is the Kockune lin
where the main machine is the Kockum saw. BT4 ahfl &e

She two input conveyors for this line. Only secanydaroducts

are sawed by this work center. The product are dalwe

QM11 and driven to the Kockum saw which optimizhe t
planks in accordance with the demand. These plarg§nally

driven to the third work center the trimmer line.
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The trimmer line (figure 4) is the third work cent&irst

work [14] have shown that this is this work cenierthe
bottleneck of the workshop. At this step, the flows$
secondary products from the Kockum line (collecprand
main products from Canter line (collector 1) comeether.
The trimmer line saw the products to length (Sawagil
perform default bleeding (saw 1). The productiwfythis work
center depends to the decisions taken on the ClmerThis
fact implies that the impact of bad decisions ste® late to be

corrected.

IV. THE SIMULATION MODEL

The bottleneck of the workshop is the last liném(ner
line). So, to reduce the model, a focus on this lnay be
performed and the precise modelling of the inveasor
(RQM4, RQMS5, and RQM7) and of the Canter and Kockum
work center with a discrete event model is unnesgs©nly a
model able to determine how the bottleneck is fedéeded.
So, in the complete model [14] presented figur¢hs, model
part surrounded in gray dashed line may be repldged
continuous model which may be extracted automdidedm
the dataset.



The first task to design this continuous modebigallect
dataset and to identify the input variables [19]e3e variables
can be classified into three categories, varialbédated to
products (log), process variables, and bill of mater routing
variables (cutting plan).

The products variables are dimensional ones: le(igdh
smallest (diaPB), greatest (diaGB) and mean (diaM@®@Yyg
diameters.

The process variables are collected at the attiivel of the
log. The input stock and the utilization rate of thottleneck,
(Q_trim, and U_trim), the number of works in proggeresent
in the Canter work center (Q_RQM) and in the inveirt
(Q_RQM4, Q_RQMS5 and Q_RQM?7) are collected.

The routing variables correspond to the cuttingnpla

variables which is here the type of products (Tcgje

between the model and the system, the Root Meamar&qu
Error (RMSE) is used:

18 R
RMSE = /NZ(yn -9.)?
n=1

whereN is the number of datg, is then" actual data point,
and y, is its predicted value.

)

A bagging strategy is used in order to construcd 10
different datasets. These datasets are used t 120l CART
models. On these 100 CART models, only the commam p
(corresponding to the same tests performed by 90%he
CART models) is preserved to build a stable reduCART
model presented figure 6.

In a second step, 9 NN models are learned to replec9
leafs of the CART model. These 9 NN models arenkegron

In this paper, the complete model is used as beatdm itfarent datasets (subparts of the complete lagrmataset

and the production of 12775 parts is simulatedotestruct the
dataset.

with respect to the tests associated to the ansasbales of the
considering leaf). These learning datasets aresiogth 759,

The learning process of the tree or NN models is &893, 518, 656, 730, 974, 580, 680, 107 respegtivbken the

supervised one. So the output variable must betifibehand
the corresponding data collected. The goal is terdeéne how
the bottleneck is fed. So, we need to determinghtaighput

validation is performed on datasets of length 73782, 469,
660, 731, 974, 620, 712, 101 respectively. For eactiel, the
learning is performed with less data than the ceteptiataset.

Canter work center and their arrival in the inputentory of
the bottleneck. These data are collected for thg3 products
simulated.

This dataset is used to fit the behavior of theiced model
to the complete one which serve as reference model.

The results obtained with this model must be coegbar
with those obtained with models build in precedingrks,
CART model [17] and NN model [19]. These resultg ar
presented in table 1.

To evaluate the performance of the continuous madtel

model, the dataset is randomly split into two detisisone for
the learning and one for the validation. To evaluhe distance

diaPB<331.5

y \

Q_rgm<80.5

noise and so its mean must be null. To do thatwyatailed
statistical hypothesis test must be used for thigerdnt
algorithms.

/\

U_trim<0.49 U_trim<0.50
LN Jy n—0
@ T_piece<1.5 T_piece<l1.5 T_piece<l.5

y y n y n
@D @D (@D (=D (o =

y

@D (=

Figure 6. Reduced stable CART model



The null hypothesis#, (that the mean of the residuals is and #, can be rejected with a risk level of 5% if:

null) and its alternative#, are:
F: u=0
H: u#0

wherey is the mean of the residuals populatidf, is rejected
with a risk level of 5% if:

(2)

£
U= >1.96
s/ N,
or ©)
£
U= <-1.96
s/ N,

whereNy is the size of the validation dataset, ands’ are the
estimated mean and variance of the residuals. &kelts of
this test for the three compared models are preddable 1.

Moreover, the standard deviation of the residuaksiaed
with these models must compared in order to detezrifithe
three models are significantly different.

For this case, the true standard deviation of thiseng, is

unknown. So, the goal is to determine if the resoltained
with the two weakest models are significantly diéfet to those
obtained with the best one. So, in the statistieat, the true

standard deviation of the noisg, is supposed to be equal to

the standard deviation of the residuals obtaineth tie best
model.

The two-tailed statistical hypothesis test is ustd
determine whether the variance of the populatiohobtained
with the different algorithms was statistically feifent to o .

The null hypothesis#, and its alternative#, were therefore:

(N, -1)s° 2[ aj
[=————<T = U,—
0_02 cl X 2

L ®
r= oo = (0a-9]

2
0

wherev is the number of degrees of freedom, ands the
confidence interval. For this case, the two bouhgsand I,

were 7011 and 6555. The results of this statistical hypisthe
test on the validation datasets are presented in Table 1.

These results show that the three models give mean of
residual statistically null (-1.96<U<1.96). However, theetre
model outperforms the NN model on the identification dataset.
On this dataset, there is no statistically significant difference
between results obtained with tree model and proposed model.

On the validation dataset, the proposed model outperforms
the two other with a statistical significancé {alues are
outside of the boundE , and T _,). So the proposed approach
improves the results.

Considering the computational time, the proposed approach
is clearly more time consuming than the two other and
particularly to the tree model (more than 3 minutes comgarin
to less than 2 seconds for the tree model). This fact islynain
due to the pruning step performed on each of the 9 DN s
models. However in case of adaptation of the model ia oas
change of the considered systems, this pruning stepbmay
omitted because the optimal structure of the networks are
already determined. Moreover, in this case, only the retearn
of the NN models which present a drift with the considered
system must be relearned and so, it is not necessaryfdonper
this relearning work on the complete model on the contrary to
the two other approaches.

¥,: o’ =0}
¥%: o°>0; (4)
o’ <a?
TABLE 1. RESULTS OBTAINED WITH THE THREE MODELS
RMSE Statistical tests
Identification Validation U r Computing time (9)
NN model 408,45 413,93 7.28*10" 12272 107.277
Tree model 263,47 32410 | 1.21710* 7533 1.621
Tree-NNmoddl  268.7189 308.4844| 8.96*10° i 184.74
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The figure 7 presents the error obtained with the tree modbow the bottleneck is fed. This approach is applied to the

(in black) and the proposed model (in red). This figu@ash

that the proposed models allows to improve the prediction a

limits the size of the great errors.

modelling of a sawmill workshop.

The results show that reduced model is efficient to
represent the material flows. The comparison of the results

Moreover, the proposed model may easily translated into @btained with the proposed approach with those obtained with

discrete event model using a tool like Arena®©. This tramsiati
is presented figure 8. The nodes of the tree part of tieein
are represented by “decide blocs” when leafs whichespond
to the neural models may be described by using “VBAdiloc

V. CONCLUSION
The association of tree and neural networks modelsitd b

only tree model or neural network model shows that the
proposed approach outperforms the two others. Morgtive
modularity of the resulting model allows to simplify its
adaptation in case of change on the real system.

At last, the design of the continuous model is performed by
using knowledge discovery in data process with may be
partially automated. The main task of the modeler is to

reduced simulation model is investigated here. In a first stepetermine which variables must be collected and to peethar
tree models are built on different datasets. These models gfataset. So, the design of a reduced model is a fasteraaier

compared and the different nodes are discarded. Thhimgs
leafs are replaced by using neural networks.

task because modeler can focus on the bottleneck model.

This resulting model is used to model the functioning of a

part of the process that is not a bottleneck in ordertermee
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