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Abstract: Bayesian Networks (BN) are used in risks analysis because their capacities allow supporting complex 

system modeling. Nevertheless, to achieve some modeling, one BN issue is still the effort required for quantification 

even if some solutions are addressing the use of logical structures like OR, AND, Noisy-OR, Leaky Noisy-OR, etc. 

These structures are useful to represent different uncertainties but they do not allow taking into account uncertainty 

on their parameters, logically present in risks analysis. To face this challenge, this paper aims at proposing imprecise 

extensions of the Leaky Noisy-OR structures and a solution to implement these imprecise structures by using 

Evidential networks. 
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1. INTRODUCTION 

1.1  Bayesian Networks in Risks Analyses 

The Bayesian network (BN), initially developed to represent 

uncertain knowledge in artificial intelligence, is a 

probabilistic model allowing to take into account many 

variables with their dependencies and based on a graphical 

representation as described by Jensen (1996). The 

relationships between these variables are defined within 

Conditional Probability Tables (CPT). BN are also able to 

represent multiple-attributes correlated variables and to 

perform relevant simulations or diagnoses. As justified by 

Medina-Oliva et al. (2009), with these capacities leading to 

be well adapted to the modeling of complex systems, BN are 

more and more used in the field of reliability, safety or risks 

analysis of industrial systems. The first application example 

is shown in Hudson et al. (2001) and other ones are 

summarized in Medina-Oliva et al. (2009). In that way, it 

exists some equivalence with other well-known tools. 

Industrial systems are complex due to the increasing number 

of components and their interactions. Moreover, risks 

analyses have to take into account different views such as 

technical, human, organizational and environmental ones. 

These areas include different types of correlated variables 

and data which can be both quantitative and qualitative. It is 

therefore necessary to be able to suitably represent these 

complex systems to make risks analyses more realistic and 

effective. In relation to an integrated vision, Léger et al. 

(2009) proposed the development of the Integrated Risks 

Analysis (IRA) based on the BN formalism and allowing 

taking into account technical, human, organizational and 

environmental items in the same approach to achieve risks 

analysis with simulations and diagnosis. Its objectives are: 

(1) prioritizing different risks, (2) helping the choice of 

barriers to reduce them, and (3) contributing to their control. 

In this type of risks analyses, it is required to deal with 

systems composed of many variables, many dependencies 

between them, and different types of data that can be 

uncertain (e.g. feedback data or experts’ judgments).  So, it is 

necessary to ensure the best possible representation of these 

variables to correctly handle the uncertainties leading to 

consistent results well adapted for their use by an analyst. 

1.2  Two main issues on data modeling within BN 

As mentioned by Antonucci (2011), one difficulty still open 

today in BN is the quantification step and more particularly 

the quantification of the Conditional Probability Tables 

(CPT). They define the conditional probability distribution on 

a child variable depending on all possible combination of the 

states of parent variables. However, the size of the CPT 

increases exponentially with the number of parent variables. 

For example, if a binary child variable Y is depending on n 

binary parents variables Xi with two possible states (T for 

“true” and F for “false”) as in many risks analysis, the 

number of necessary values to completely define P(Y={T}|Xi) 

is equal to 2
n
. One solution is to assume a functional 

relationship to define the relation between parents variables 

and child variable as mentioned by Zagorecki and Druzdzel 

(2004). One of the most applied solution is the Noisy-OR (N-

OR) and its extension called Leaky Noisy-OR (LN-OR). 

With these structures, fewer parameters are needed to define 

a CPT as shown by Pearl (1988) and Henrion (1989).  

A second issue not fully solved on BN formalism is related to 

the uncertainties on variables and model parameters. Indeed, 

as argued by Zio (2009), it is necessary to be able to model, 

propagate and interpret uncertainty in risks analyses. Indeed, 

if the assessment of some variables can generally be done by 

using statistical distributions (e.g. based on feedback data), 

the assessment of some other variables is generally achieved 



 

 

     

 

with the use of experts’ judgments. These different types of 

assessment involve different types of uncertainty. Two types 

of uncertainty are proposed by Hoffman and Hammonds 

(1994): the “random” uncertainty and the “epistemic” 

uncertainty. Random uncertainty corresponds to the natural 

variability of a physical phenomenon and epistemic 

uncertainty corresponds to a lack of knowledge. The use of 

experts’ judgments raises the problem of the nature of 

uncertainty in risks studies. In several cases, it involves the 

use of other uncertainty modeling frameworks than the 

probabilistic framework as argued in Fallet et al. (2011). 

Even if structures like N-OR allow taking into account 

several types of uncertainty like uncertainty on dependencies 

or in the system modeling, it implies other sources of 

uncertainty. For example, the uncertainty on the parameters 

of these structures is not taking into account.  

In that way, the objective of the work presented here is not to 

propose new modeling structures but to extend those existing 

and to enrich them by integrating other sources of 

uncertainty. More precisely, the paper aims at proposing 

imprecise N-OR and LN-OR structures for supporting several 

kinds of uncertainty. In that way, section II introduces N-OR 

and LN-OR structures and proposes a solution to implement 

them. Then, section III focuses on developments required to 

integrate several uncertainties in N-OR and LN-OR. The 

feasibility and added-value of these developments are shown 

in section IV for the case of the IRA methodology. Finally, 

conclusions and research perspectives are proposed on the 

basis of these different developments (section V). 

2. PROBLEM STATEMENT 

2.1  Noisy-OR structure 

The Noisy-OR structure is an extension of the OR structure 

introduced by Pearl (1988) to reduce the elicitation effort in 

building BN for probabilistic models but also models that 

combine probability and logic. Noisy indicates that the causal 

interaction is not deterministic (any cause can produce the 

effect with some probability). Let us consider a binary 

variable Y with n binary parent variables Xi (Fig. 1). These 

variables can be either true {T} or false {F}. XT is defined as 

the set of Xi which are “true” and XF is defined as the set of Xi 

which are “false”. The idea of Pearl is to associate to each Xi 

a “link probability”  pi such as 0 ≤ pi ≤ 1. The probability pi 

corresponds to the probability that Y was true if Xi is true. It 

illustrates the fact that the causal dependency between Xi and 

Y can be inhibited. This probability pi is defined as follows:  

      F,TTP ,  ijjii XXYp   (1) 

With this proposal, only n parameters are sufficient to define 

completely the CPT of Y. Then, the probabilities that Y will 

be “true” or “false” given Xi are defined as follows: 

    



Ti XX

ii pXY 11TP    (2) 

    



Ti XX

ii pXY 1FP    (3) 

2.2  Leaky Noisy-OR structure 

The N-OR structure implies that Y is false with a probability 

equal to 1 if all its parent variables Xi are false. However, in 

many cases, it is not a realistic assumption. Indeed, in several 

situations it is difficult to capture all the causes of Y (e.g. for 

reliability purpose, it means to define all the failure modes of 

a component). Thus Henrion (1989) proposed an extension of 

the N-OR structure called Leaky Noisy-OR by introducing a 

new parameter called “leak probability”. The leak probability 

corresponds to the fact that it may exist other parent variables 

to define more precisely the child variable. This leak 

probability can be modeled by using another parent variable 

L with a link probability pi=l (Fig. 1). Let l be this leak 

probability such as 0 ≤ l < 1 and defined as follows:  

    niXYl i ...1,FTP     (4) 

Henrion (1989) proposed a first parameterization of the LN-

OR structure with n+1 parameters (n inhibition probability pi 

and one leak l): 

     
















Ti XX

i
i

l

p
lXY

1

1
11TP   (5) 

     
















Ti XX

i
i

l

p
lXY

1

1
1FP   (6) 

Diez (1993) gave another parameterization of the LN-OR 

structure as follow: 

      



Ti XX

ii plXY 111TP   (7) 

      



Ti XX

ii plXY 11FP   (8) 

These two parameterizations are mathematically equivalent 

but the difference is related to the question to be asked to the 

experts for knowledge elicitation. Henrion’s parameterization 

led to a question like: “What is the probability that Y is true 

given that Xi is true and all other modeled variables are 

false?”. Diez’s parameterization is supported by a question 

like: “What is the probability that Y is true given that Xi is 

true and all other modeled and non-modeled variables are 

false?”. In Henrion’s parameterization, experts have to 

consider a combined influence of Xi and the leak on Y. In 

Diez’s parameterization, experts have to consider the link 

between Xi and Y with the leak absent. This paper is using the 

parameterization proposed by Diez (1993) by investigating 

imprecise extensions of this parameterization. Developments 

done in section 3 can be extended to Henrion’s 

parameterization with the same proof than those used for 

Diez’s parameterization. 

          

Fig. 1. Noisy-OR and Leaky Noisy-OR structures. 



 

 

     

 

2.3  The problem of uncertainty in N-OR / LN-OR structures 

The parameters defined in equations of sub-section 2.1 and 

2.2 can be uncertain too. For example, the influence of a 

parent variable on a child variable but also the number of 

non-modeled parent variables or the state of parent variables 

can be not well-known. Indeed, in risks analyses, experts 

often use intervals to assess different variables. For example: 

an assessment by intervals can be used to assess the state of a 

parent variable or the influence of a parent variable on the 

child variable can be assessed with intervals. It is therefore 

necessary to be able to take into account uncertainties on the 

link probabilities, on the leak probability and on the state of 

parent variables Xi.  Scientific contributions already exist 

about the problem of uncertainty in logical structures like N-

OR or LN-OR. Indeed, Srinivas (1993) and Diez (1993) 

proposed an extension of N-OR structure for non-Boolean 

variables. Antonucci (2011) developed an imprecise LN-OR 

structure with uncertainty on the link probabilities that can be 

extended to the uncertainty on the leak probability (in Diez’s 

parameterization). However, it exists only few works dealing 

with the problem of uncertainty on the state of Boolean 

parent variables. It can be noticed work of Simon and Weber 

(2009) for AND and OR gates. Moreover, there is no work 

dealing with the uncertainties on the parameters previously 

defined for N-OR and LN-OR. Thus, the contribution 

finalized in this paper is to complete the previous works by 

proposing extensions of LN-OR structures to handle 

uncertainty on parameters and to reduce the effort in 

quantifying the CPT. In the next section, several extensions 

of generic relations of N-OR and LN-OR are investigated to 

take into account one or all of these uncertainties on 

parameters. In order to use them in risks analyses based on 

the BN formalism, a solution to implement imprecise N-OR 

and LN-OR is defined with the use of Evidential Networks. 

3. IMPRECISE N-OR AND LN-OR STRUCTURES 

3.1  LN-OR with uncertainty on the state of parent variables 

Simon and Weber (2009) have investigated a solution based 

on Evidential networks and Dempster-Shafer framework to 

take into account the uncertainty on the state of binary parent 

variables in AND and OR gates. Thus, the modeling 

formalization proposed by Simon and Weber is applied to the 

case of LN-OR gate. Let us consider variables Xi that can be 

either {T} or {F}. By considering an uncertainty on the state 

of Xi, another modality is defined: {T,F}. This modality 

defining the variable Xi is exclusively in {T} or {F} state 

without distinguish exactly which. XTF is defined as the set of 

Xi in the state {T,F}. The value on the modality {T,F} can be 

transferred to {T} or {F} if more information is available. 

Focusing on the case where Xi={T,F}, the first objective is to 

identify a bounding of P(Y={T}|Xi) and P(Y={F}|Xi) to 

characterize the uncertainty on Y due to the uncertainty on the 

state of parent variables. Indeed, it is easy to proof that the 

uncertainty on the state of variable Xi is equal to the 

difference between the lower and upper bounds as shown by 

Simon and Weber (2009). Lower bounds will correspond to 

the equations of P(Y={T}|Xi) and P(Y={F}|Xi). According to 

the generic relation of a LN-OR, it is necessary to maximize 

the product of (1-pi) for XiXT in order to minimize 

P(Y={T}|Xi). On the contrary, it is necessary to minimize this 

product to minimize P(Y={F}|Xi). Let us consider that it 

exists Xk such as Xk={T,F}. Xk can be either {T} or {F}. If 

Xk={T} then XkXT and the product of (1-pi) for XiXT 

decreases. Consequently, when at least one variable Xi such 

as XiXTF, the product of (1-pi) is minimized for XiXT by 

taking into account variables Xi such as XiXTF and the 

product is maximized by not taking into account variables Xi 

such as XiXTF, as shown in the following equations: 

      



Ti XX

ii plXY 111TP    (9) 

        



TFiTi XX

i

XX

ii pplXY 111FP  (10) 

The uncertainty on the state of Y is defined as follow: 

        iii XYXYXY FPTP1FT,P   

     













 

 TFiTi XX

i

XX

i ppl 1111   (11) 

3.2  LN-OR with uncertainty on the “link probabilities” 

Let us consider an uncertainty on link probabilities pi. This 

parametric uncertainty can be modeled by an interval on pi 

with lower bound pi min and upper bound pi max. By analyzing 

the derivate functions of the generic equations of the LN-OR 

structure, the bounds are defined for P(Y={T}|Xi) and 

P(Y={F}|Xi). The lower values of these bounds correspond to 

the relations of P(Y={T}|Xi) and P(Y={F}|Xi) when there is an 

uncertainty on pi. With these bounds (defined in Appendix 

A.), the following relations are obtained: 

      



Ti XX

ii plXY
min

111TP   (12) 

      



Ti XX

ii plXY
max

11FP   (13) 

The uncertainty on the state of Y is defined as follow: 

        iii XYXYXY FPTP1FT,P   

     













 

 TiTi XX

i

XX

i ppl
maxmin

111   (14) 

3.3  LN-OR with uncertainty on the leak probability 

Let us consider an uncertainty on the leak probability l. This 

uncertainty can be modeled by an interval on l with lower 

bound lmin and upper bound lmax. By analyzing the derivate 

functions of the generic relations of the LN-OR structure, the 

bounds are defined for P(Y={T}|Xi) and P(Y={F}|Xi). The 

lower values of these bounds correspond to the relations of 

P(Y={T}|Xi) and P(Y={F}|Xi) when there is uncertainty on the 

link probability. Based on these bounds (defined in Appendix 

A.), the following relations are obtained: 

      



Ti XX

ii plXY 111TP min
  (15) 



 

 

     

 

      



Ti XX

ii plXY 11FP max
  (16) 

The uncertainty on the state of Y is defined as follow: 

      



Ti XX

ii pllXY 1FT,P minmax
 (17) 

Let us consider the definition of the “leak probability”. It 

corresponds to the fact that it may exist non-modeled parent 

variables. Consequently, if l is equal to 0.05, it makes more 

sense to consider 0 ≤ l ≤ 0.05 because it is not sure that it 

exists non-modeled parent variables. In the LN-OR structure 

of Henrion, the leak is defined as the probability that Y was 

true given that all Xi are false. With the imprecise LN-OR 

structure proposed in this section, the leak probability l is 

defined as follows according to (15), (16) and (17): 

    niFXYl i ...1,FT,P    (18) 

This relation proposes another interpretation and modeling of 

l. The leak probability corresponds to an ignorance on the 

exhaustiveness of the parent variables. Indeed, this 

interpretation defined the leak as the fact that non-modeled 

parent variables may exist while the original definition of 

Henrion considers that non-modeled parent variables exist if 

l≠0. In section 4, the difference between the interpretation of 

Henrion and the interpretation of (18) is shown. 

3.4  LN-OR with uncertainty on all parameters 

By using the relationships previously identified for each type 

of uncertainty on the LN-OR parameters, general relations 

taking into account the three kinds of uncertainty are defined. 

Then, the uncertainty in the LN-OR is integrated as follows: 

      



Ti XX

ii plXY
min

111TP min
     (19) 

        



TFiTi XX

i

XX

ii pplXY
maxmax

1.1.1FP max
 (20) 

      



Ti XX

ii plXY
min

11FT,P min
 

      
 


Ti TFiXX XX

ii ppl
maxmax

111 max
      (21) 

3.5  Specialization to the Noisy-OR structure 

The relations identified in the previous sub-sections dedicated 

to handle uncertainty on the LN-OR parameters can be 

specialized to the characterization of the uncertainty on the 

parameters of the N-OR structure. For this purpose, a leak l is 

considered equal to zero in (19), (20) and (21): 

    



Ti XX

ii pXY
min

11TP    (22) 

      



TFiTi XX

i

XX

ii ppXY
maxmax

11FP  (23) 

The uncertainty on the state of Y is defined as equal to: 

  

      
 





Ti TFiTi XX XX

ii

XX

i ppp

Y

maxmaxmin
111

FT,P
 (24) 

3.6  From Bayesian Networks to Evidential Networks 

In order to use the relations defined in subsections 3.3 to 3.5, 

it is important to find a relevant model to encode and to 

propagate these relations in a graphical representation. The 

use of the Evidential networks model proposed by Simon and 

Weber (2009) is taken as a solution to implement imprecise 

LN-OR and to integrate them in Bayesian risks models. 

Evidential networks consist in a graphical representation of 

knowledge like BN but with belief masses instead of 

probabilities. As mentioned by Simon and Weber (2009), 

Evidential networks are based on the Dempster-Shafer 

framework and the Bayesian inference is extended to belief 

masses (corresponding to the probabilities defined in 

previous equations). The proposed Evidential networks 

formalism is applied to the performance and the reliability of 

systems. The uncertainty is represented by intervals with 

upper and lower bounds. As for a BN, an EN allow dealing 

with a lot of variables and modeling the dependences and the 

expression of relationships between the variables of the study 

on a graphical structure (Fig. 2). The difference between the 

two models is the underlying framework.  

 

Fig. 2. Implementing imprecise LN-OR relations in CPTs 

The next section is dedicated to the application of the 

imprecise LN-OR structure in risks analyses and more 

particularly in the Integrated Risks Analysis methodology by 

using Evidential networks. The objective is to show (a) how 

imprecise LN-OR structure can be used in risks analysis and 

(b) the interest of the developments proposed in section 3. 

4. APPLICATION TO THE IRA METHODOLOGY 

4.1  The use of Leaky Noisy-OR in the IRA methodology 

The LN-OR structure is used in the IRA methodology as 

explained by Léger et al. (2009). It allows to characterize the 

relation between the organizational, human and technical 

views in BN dedicated to the study of an industrial system. 

For instance, maintenance or operating actions are defined by 

a “barrier model” with organizational and human variables 

linked to the efficiency of the barrier as shown in Fig. 3. The 

links between the variables characterize the influence of a 

variable to another through the use of “aggravation factors” 

(noted αi). For sake of illustration, this section consider a 

barrier model with only the human variables and the three 

phases of maintenance or operating actions (Preparation, 

Realization and Closing) and the action efficiency E. Each 

human indicator is either “true” or “false” and is assessed by 

an aggravation factor αi that corresponds to its influence on a 



 

 

     

 

phase if it is “true”. LN-OR structure allows building the 

CPT of each phase of maintenance or operating actions and 

the CPT for the efficiency of the studied barrier. The link 

probabilities pi corresponds to the aggravation factors αi. 

Aggravation factors characterize the worsening influence of 

the state of human indicators on the efficiency of the phase 

(or the worsening influence of the efficiency of a phase on 

the efficiency of the action). The leak probability corresponds 

to the fact that it may exist other variables to describe each 

phase of the action. Thus, the relations used to apply the LN-

OR to the IRA methodology are: l=l and αi=1-pi.  

 

Fig. 3. IRA barrier model with LN-OR parameters 

In the IRA methodology, there exist uncertainties on l, αi and 

the state of parent variables. Accordingly with (19) to (21), 

the relations for imprecise LN-OR is applied to the IRA 

methodology by replacing pi with αi such as αi min=1-pi max and 

αi max=1-pi min. Then, the CPT is defined by : 

     



Ti

mzc

XX

ii lXY min11TP   (25) 

     



TFiTi XX

i

XX

ii lXY
minminmax1FP   (26) 

     



Ti XX

ii lXY
maxmin1FT,P     

  



TFiTi XX

i

XX

il
minminmax1     (27) 

4.2  Application 

First, the preparation phase P (Fig. 3) is analyzed to illustrate 

the use of the imprecise LN-OR in the IRA methodology. Let 

us consider that the preparation phase P has a leak probability 

l equals to 0.05 corresponding to the fact that it may exist 

other human indicators to define P. The study can be encoded 

in a risk model by using Evidential networks as mentioned in 

section 3.6. Three modalities are defined for each node: {T}, 

{F}, {T,F}. To quantify each line of a CPT, (25), (26) and 

(27) are used as shown in Fig. 2.   

For the first simulation, only an uncertainty on the leak 

probability l is considered to underline the difference 

between the interpretation given by Henrion and those 

proposed in section 3.3. Let us consider αi=0.5 for each link 

and prior distributions equal to 0.5/0.5 for each human 

variable. By considering the leak equal to 0.05, 

P(P={T})=0.5992 is obtained. Considering the leak such as 0 

≤ l ≤ 0.05, the result is P(P={T})[0.5781;0.5992]. This 

interval corresponds to the uncertainty due to the possible 

non-modeled causes. The upper bound characterizes the most 

positive situation when considering the leak definition.  

Now, consider that the state of each human indicator is 

completely unknown (total ignorance). In the generic LN-OR 

(probabilistic framework), this ignorance is modeled by 

considering P(Xi={T})=P(Xi={F})=0.5 with the “indifference 

principle” proposed by Levine and Tribus (1978). With the 

imprecise LN-OR, this ignorance is modeled by considering 

the modality {T,F} equals to 1 thanks to the “least 

commitment principle”. Whereas P(P={T})=0.5992 is 

obtained with the generic LN-OR, the result is 

P(P={T})[0;0.8812] with the imprecise LN-OR. This 

interval corresponds to the bias induced by the needed 

adaptation of the generic LN-OR to represent total ignorance. 

Indeed, by considering an equiprobability on Xi to model total 

ignorance, there is no difference of representation with an 

objective equiprobability in the generic LN-OR. 

These studies can be extended easily to a whole barrier model 

by considering the realization phase R, the closing phase C 

and the efficiency E of the studied action. Four imprecise 

LN-OR are used for each barrier (Fig. 3). As for one phase, 

lower and upper bounds are obtained for each node and 

characterize the uncertainty on each variable according to the 

uncertainties on prior distributions, link probabilities and leak 

probabilities.  Finally, imprecise LN-OR is also applied on a 

whole IRA model with 4 barriers (16 LN-OR) and more than 

hundred variables.  All barriers were defined as previously 

mentioned. Other nodes of the risks model were defined to 

take into account the uncertainty on barriers and propagate it 

through the model. At the end, intervals are obtained for 

several variables like the safety level or the system 

availability, etc. The bounds provide information about the 

scatter on the unique value obtain with the use of the generic 

LN-OR structure. Thanks to these intervals, the analyst can 

take more realistic decision according to the business policy 

and the risks he has to manage. Indeed, depending on the 

decision strategy, the analyst has to choose between the most 

conservative results, the less risky decision, etc. 

5. CONCLUSIONS 

This paper proposes imprecise LN-OR structure for 

supporting several kinds of uncertainty within them. These 

structures are enriched by considering other sources of 

uncertainty than the random uncertainty. The objective of 

these developments is to provide more general quantification 

structures that the initial ones. The new structures allow 

integrating uncertainty on the structures’ parameters like 

dependencies influences, states of parent variables, etc. 

Different relations are proposed each type of uncertainty and 

take into account all uncertainties at the same time. A 

specialization to the N-OR is also given. During the 

development of the imprecise structures, another 

interpretation of the leak probability defined by Henrion 

(1989) has been investigated. This interpretation takes into 

account the fact that non modeled causes (corresponding to l) 

can exist or not. The comparison between these two 

interpretations underlines that Henrion’s interpretation is less 

conservative than the one proposed. Whereas Henrion 

considers that non-modeled causes exist if l≠0, our 

contribution is considering that non-modeled causes can 

exist if l≠0. 



 

 

     

 

Then, Evidential networks are used to solve the problem of 

inference related to the use of imprecise structures. 

“Advanced” LN-OR structures defined in this paper were 

implemented by adapting the Bayesian models semantics 

with new modalities. Indeed, by using Bayesian inference in 

Evidential networks, simulations and diagnosis can be easily 

achieved and providing more informative values to the 

analyst with lower/upper bounds.   

Finally, in order to validate the proposed developments, an 

application of the imprecise structures to the IRA 

methodology is shown. The application underlines the 

information provided by the use of lower/upper bounds to 

characterize the uncertainty on several variables. In order to 

propose other solutions to build networks with uncertainty, 

many investigations should be addressed as future 

developments: extension to Henrion’s parameterization, 

generalization to n-ary variables, generalization of other 

structures, etc. 
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Appendix A. UNCERTAINTY ON pi AND l 

The uncertainty on link probabilities pi can be represented by 

pi min ≤ pi ≤  pi max. By analyzing the derivate functions of 

P(Y={T}|Xi) and P(Y={F}|Xi), bounds can be defined. 
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P(Y={T}|Xi) is increasing and its minimum P is obtained for 

pi=pi min and its maximum P for pi=pi max. On the contrary, 

P(Y={F}|Xi) is decreasing and its minimum is obtained for 

pi=pi max and its maximum for pi=pi min : 
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The uncertainty on the leak l can be represented by lmin ≤ l ≤  
lmax. By analyzing the derivate functions of P(Y={T}|Xi) and 

P(Y={F}|Xi), bounds can be defined. 
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P(Y={T}|Xi) is increasing and its minimum is obtained for 

l=lmin and its maximum for l=lmax. On the contrary, 

P(Y={F}|Xi) is decreasing and its minimum is obtained for 

l=lmax and its maximum for l=lmin : 
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The uncertainty is defined in the same way as for pi. 


