Borel summability of the 1/N expansion in quartic O(N)-vector models - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Borel summability of the 1/N expansion in quartic O(N)-vector models

(1) , (2, 3, 4) , (2) , (5)
1
2
3
4
5

Abstract

We consider a quartic O(N)-vector model. Using the Loop Vertex Expansion, we prove the Borel summability in 1/N along the real axis of the partition function and of the connected correlations of the model. The Borel summability holds uniformly in the coupling constant, as long as the latter belongs to a cardioid like domain of the complex plane, avoiding the negative real axis.
Fichier principal
Vignette du fichier
ONBorel-0dim.pdf (792.76 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03781144 , version 1 (20-09-2022)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Léonard Ferdinand, Razvan Gurau, Carlos I. Perez-Sanchez, Fabien Vignes-Tourneret. Borel summability of the 1/N expansion in quartic O(N)-vector models. 2022. ⟨hal-03781144⟩
17 View
1 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More