Evaporation, effets Marangoni et dépôts de particules pilotés par chauffage laser - Laboratoire Ondes et Matière d'Aquitaine Accéder directement au contenu
Thèse Année : 2021

Evaporation, Marangoni effects and particles’ deposition driven by laser heating

Evaporation, effets Marangoni et dépôts de particules pilotés par chauffage laser

Résumé

Controlling the assembly and deposition of particles on substrates is essential for creating new materials and functionalizing surfaces. The use of so-called "bottom-up" methods such as selfassembly by "coffee stain" effect, resulting from the evaporation of a suspension of particles, seems promising. However, these methods often remain limited to relatively simple deposit geometries (lines, rings). The aim of this study is to overcome these limitations by proposing a new approach, versatiland contactless, which would allow dynamic assembly and organization of micro / nano particles. In this thesis work, we use an infrared laser to locally heat a drop of an aqueous suspension deposited on a glass slide, in order to create a thermal gradient inducing a Marangoni effect. In addition to the dominant effects of evaporation at the edges of the drop, a recirculation zone appears and concentratesthe particles around the laser heating zone. We have experimentally analyzed the effects of several physicochemical parameters: composition of the solvent, geometry of the drop, laser parameters on the Marangoni recirculation zone and the size of the final deposit. We have also characterized, by an infrared thermography method, the amplitude and the evolution of the temperature field induced by the laser. Models linking the thermodynamic and hydrodynamic aspects of the system make it possible to account for the observed results. The use of more concentrated solutions also made it possible to demonstrate the formation of three-dimensional deposits induced by a buckling instability. Finally, we show that it is possible to structure the shape of the final deposit by modifying that of the laser beam. The use of laser heating therefore opens a new path towards the production of structured deposits of micro / nano particles at the submillimeter scale.
Contrôler l’assemblage et le dépôt de particules sur des substrats est essentiel pour créer de nouveaux matériaux et fonctionnaliser des surfaces. L’utilisation de méthodes dites "bottom-up" telle que l’autoassemblage par effet "tâche de café", résultant de l’évaporation d’une suspension de particules, semble prometteuse. Cependant, ces méthodes restent souvent limitées à des géométries relativement simples de dépôt (lignes, anneaux). Le but de cette étude est de dépasser ces limitations en proposant une nouvelle approche, versatile et sans contact, qui permettrait d’assembler et d’organiser de façon dynamique des micro/nano particules. Dans ce travail de thèse, nous utilisons un laser infrarouge afin de chauffer localement une goutte d’une suspension aqueuse déposée sur une lame de verre, dans le but de créer un gradient thermique induisant un effet Marangoni. En plus des effets dominants de l’évaporation aux bords de la goutte, une zone de recirculation apparaît et concentre les particules autour de la zone de chauffage laser. Nous avons analysé expérimentalement les effets de plusieurs paramètres physico-chimiques : composition du solvant, géométrie de la goutte, paramètres du laser sur la zone de recirculation Marangoni et la taille du dépôt final. Nous avons également caractérisé, par une méthode de thermographie infrarouge, l’amplitude et l’évolution du champ de température induit par le laser. Des modèles reliant les aspects thermodynamiques et hydrodynamiques du système permettent de rendre compte des résultats observés. L’utilisation de solutions plus concentrées a également permis de mettre en évidence la formation de dépôts tridimensionnels induits par une instabilité de flambage. Enfin, nous montrons qu’il est possible de structurer la forme du dépôt final en modifiant celle du faisceau laser. L’utilisation d’un chauffage laser ouvre donc une nouvelle voie vers la production de dépôts structurés de micro/nano particules à l’échelle submillimétrique.
Fichier principal
Vignette du fichier
GOY_NICOLAS-ALEXANDRE_2021_RED.pdf (38.41 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03322994 , version 1 (20-08-2021)

Identifiants

  • HAL Id : tel-03322994 , version 1

Citer

Nicolas-Alexandre Goy. Evaporation, effets Marangoni et dépôts de particules pilotés par chauffage laser. Physique [physics]. Université de Bordeaux, 2021. Français. ⟨NNT : 2021BORD0176⟩. ⟨tel-03322994⟩
185 Consultations
17 Téléchargements

Partager

Gmail Facebook X LinkedIn More