Identification of vortices in quantum fluids: finite element algorithms and programs - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... (Preprint) Year : 2022

Identification of vortices in quantum fluids: finite element algorithms and programs

(1) , (1) , (1) , (2)
1
2
Victor Kalt
  • Function : Author
  • PersonId : 1185891
  • IdHAL : victor-kalt
Georges Sadaka
  • Function : Author
  • PersonId : 1185892
Ionut Danaila
Frédéric Hecht

Abstract

We present finite-element numerical algorithms for the identification of vortices in quantum fluids described by a macroscopic complex wave function. Their implementation using the free software FreeFem++ is distributed with this paper as a post-processing toolbox that can be used to analyse numerical or experimental data. Applications for Bose-Einstein condensates (BEC) and superfluid helium flows are presented. Programs are tested and validated using either numerical data obtained by solving the Gross-Pitaevskii equation or experimental images of rotating BEC. Vortex positions are computed as topological defects (zeros) of the wave function when numerical data are used. For experimental images, we compute vortex positions as local minima of the atomic density, extracted after a simple image processing. Once vortex centers are identified, we use a fit with a Gaussian to precisely estimate vortex radius. For vortex lattices, the lattice parameter (inter-vortex distance) is also computed. The post-processing toolbox offers a complete description of vortex configurations in superfluids. Tests for two-dimensional (giant vortex in rotating BEC, Abrikosov vortex lattice in experimental BEC) and three-dimensional (vortex rings, Kelvin waves and quantum turbulence fields in superfluid helium) configurations show the robustness of the software. The communication with programs providing the numerical or experimental wave function field is simple and intuitive. The post-processing toolbox can be also applied for the identification of vortices in superconductors.
Fichier principal
Vignette du fichier
paper_postproc_CPC.pdf (4.79 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03849287 , version 1 (11-11-2022)

Identifiers

Cite

Victor Kalt, Georges Sadaka, Ionut Danaila, Frédéric Hecht. Identification of vortices in quantum fluids: finite element algorithms and programs. 2022. ⟨hal-03849287⟩
0 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More