Intégration de fonctions électroniques imprimées sur des thermoplastiques 2D et 3D pour des applications radiofréquences - Laboratoire Génie des procédés papetiers Accéder directement au contenu
Thèse Année : 2022

Printed integration of electronic capabilities on 2D and 3D thermoplastics for radiofrequency implementations

Intégration de fonctions électroniques imprimées sur des thermoplastiques 2D et 3D pour des applications radiofréquences

Résumé

The MINT chair (innovating for molded & printed electronics) is an Excellency scientific chair supported by the Fondation Partenariale Grenoble INP and sponsored by Schneider Electric. Through MINT chair, Schneider teams up with two research laboratories, the LGP2 and the IMEP-LaHC, to develop electronic features on 3D shaped thermoplastics. The MINT chair gave rise to the thesis: « Printed integration of electronic capabilities on 2D and 3D thermoplastic for radiofrequency implementations »This thesis goals are the implementation, characterization and optimization of the jetting impression process on 2D and 3D thermoplastic. Moreover, the performances of this process must be assessed in order to define its strengths and limits in a radiofrequency usage. Finally, the process capabilities were showcased by printing prototypesTo this end, this dissertation is split into three successive chapters. Firstly, the state of the art of the plastronic field, carried out through literature review on plastronic processes and their current implementations, is presented. Plastronic technologies are examined and a classification amongst well-known 3D additive manufacturing technologies is proposed. Prototypes made with plastronic technologies are displayed for each concerned field. Secondly, the electrical and geometric characterization as well as the implementation of the jetting process is presented. Printing parameters are studied and optimized to determine a resilient printing process and printing optimization strategies are set up. Finally, jetting process printouts radiofrequency capabilities are assessed through characterization of 2D and 3D coplanar transmission lines. 2D coplanar transmission lines are simulated and printed. The printing process is optimized by printing meshed ground planes. Coplanar lines are printed on 3D substrates having 90- and 130-degrees angles, then measured. Some radiofrequency implementations are examined: a LoRa antenna, a RFID tag and a 5G antenna radome.
La chaire MINT (innovating for molded & printed electronics) est une Chaire d’Excellence scientifique soutenue par la Fondation Partenariale Grenoble INP et ayant pour mécène Schneider Electric. Au travers de la Chaire MINT, Schneider s’engage avec deux laboratoires de recherche, le LGP2 et l’IMEP-LaHC dans le but de développer des fonctionnalités électroniques sur des thermoplastiques de forme 3D. La Chaire MINT a donné lieu à la thèse : « intégration de fonctions électroniques imprimées sur des thermoplastiques 2D et 3D pour des applications radiofréquences ».Les objectifs de cette thèse sont les suivants : mettre en œuvre, caractériser et optimiser le procédé d’impression jetting sur thermoplastique 2D et 3D. De plus, afin de pouvoir définir les limites et les atouts de cette technologie pour des applications radiofréquences, les performances de ce procédé en radiofréquence doivent être évaluées. Des dispositifs ont également été mis en œuvre afin d’illustrer les possibilités du procédé.Pour cela la thèse est présentée en trois chapitres : dans un premier temps une étude bibliographique est réalisée sur les procédés plastroniques et leurs applications actuelles de dresser un état de l’art du domaine plastronique. Les technologies plastroniques sont détaillées et une proposition de classification de celles-ci parmi les technologies de fabrication additives 3D maitrisées est proposée. Des dispositifs réalisés en technologie plastroniques sont présentés pour chacun des domaines abordés. Dans un deuxième temps le développement du procédé de jetting et sa caractérisation géométrique et électrique est présenté. Les paramètres d’impression sont étudiés et optimisés pour une impression robuste. Des stratégies d’optimisation de l’impression sont mises en place.Finalement, à travers une caractérisation de ligne de transmission coplanaire en 2D et en 3D, une évaluation des performances radiofréquence des impressions avec le procédé jetting est réalisée. Des lignes coplanaires en 2D sont simulées et imprimées. Une optimisation de l’impression est réalisée en imprimant des plans de masse maillés. Des lignes coplanaires sont également imprimées sur des substrats 3D comportant des angles à 90° et à 130°, puis mesurées. Des applications radiofréquences sont ensuite détaillées sur des substrats 2D et 3D tels qu’une antenne LoRa, un tag RFID et un radôme pour antenne 5G.
Fichier principal
Vignette du fichier
DELFAUT_2022_archivage.pdf (10.24 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03770216 , version 1 (06-09-2022)

Identifiants

  • HAL Id : tel-03770216 , version 1

Citer

Camille Delfaut. Intégration de fonctions électroniques imprimées sur des thermoplastiques 2D et 3D pour des applications radiofréquences. Science des matériaux [cond-mat.mtrl-sci]. Université Grenoble Alpes [2020-..], 2022. Français. ⟨NNT : 2022GRALI036⟩. ⟨tel-03770216⟩

Collections

UGA CNRS STAR LGP2
115 Consultations
138 Téléchargements

Partager

Gmail Facebook X LinkedIn More