Dynamic instability of individual carbon nanotube growth revealed by in situ homodyne polarization microscopy - Laboratoire Charles Coulomb (L2C) Accéder directement au contenu
Article Dans Une Revue Nano Letters Année : 2021

Dynamic instability of individual carbon nanotube growth revealed by in situ homodyne polarization microscopy

Résumé

Understanding the kinetic selectivity of carbon nanotube growth at the scale of individual nanotubes is essential for the development of high chiral selectivity growth methods. Here we demonstrate that homodyne polarization microscopy can be used for high-throughput imaging of long individual carbon nanotubes under real growth conditions (at ambient pressure, on a substrate), and with sub-second time resolution. Our in situ observations on hundreds of individual nanotubes reveal that about half of them grow at a constant rate all along their lifetime while the other half exhibits stochastic changes in growth rates, and switches between growth, pause and shrinkage. Statistical analysis shows that the growth rate of a given nanotube essentially varies between two values, with similar average ratio (~1.7) regardless of whether the rate change is accompanied by a change in chirality. These switches indicate that the nanotube edge or the catalyst nanoparticle fluctuates between different configurations during growth.
Fichier principal
Vignette du fichier
Dynamic instability of CNT growth_Main_011021_HAL.pdf (933.58 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03362238 , version 1 (01-10-2021)

Identifiants

Citer

Vladimir Pimonov, Huy-Nam Tran, Léonard Monniello, Saïd Tahir, Thierry Michel, et al.. Dynamic instability of individual carbon nanotube growth revealed by in situ homodyne polarization microscopy. Nano Letters, 2021, ⟨10.1021/acs.nanolett.1c03431⟩. ⟨hal-03362238⟩
84 Consultations
87 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More