A mixture model to characterize genomic alterations of tumors

Christine Keribin 1, 2 Yi Liu 3 Tatiana Popova 4 Yves Rozenholc 3, 5
1 CELESTE - Statistique mathématique et apprentissage
Inria Saclay - Ile de France, LMO - Laboratoire de Mathématiques d'Orsay
3 SELECT - Model selection in statistical learning
Inria Saclay - Ile de France, LMO - Laboratoire de Mathématiques d'Orsay
5 BioSTM - Laboratoire de biomathématiques, EA 7537 [Paris]
UPD5 Pharmacie - Université Paris Descartes - Faculté de Pharmacie de Paris
Abstract : Characterizing the genomic copy number alterations (CNA) in cancer is of major importance in order to develop personalized medicine. Single nucleotide polymorphism (SNP) arrays are still in use to measure CNA profiles. Among the methods for SNP-array analysis, the Genome Alteration Print (GAP) by Popova et al, based on a preliminary segmentation of SNP-array profiles, uses a deterministic approach to infer the absolute copy numbers profile. We develop a probabilistic model for GAP and define a Gaussian mixture model where centers are constrained to belong to a frame depending on unknown parameters such as the proportion of normal tissue. The estimation is performed using an expectation-maximization (EM) algorithm to recover the parameters characterizing the genomic alterations as well as the most probable copy number change of each segment and the unknown proportion of normal tissue. We claim to deduce the tumor ploidy from penalized model selection criterion. Our model is tested on simulated and real data
Complete list of metadatas

Cited literature [18 references]  Display  Hide  Download

Contributor : Christine Keribin <>
Submitted on : Friday, December 6, 2019 - 3:15:59 PM
Last modification on : Monday, January 13, 2020 - 1:59:28 PM


Publisher files allowed on an open archive


  • HAL Id : hal-02391289, version 1


Christine Keribin, Yi Liu, Tatiana Popova, Yves Rozenholc. A mixture model to characterize genomic alterations of tumors. Journal de la Société Française de Statistique, Société Française de Statistique et Société Mathématique de France, 2019. ⟨hal-02391289⟩



Record views


Files downloads