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Abstract

Background Forty-six XY Differences/Disorders of Sex Development (DSD) are characterized by a broad phenotypic
spectrum ranging from typical female to male with undervirilized external genitalia, or more rarely testicular regres-
sion with a typical male phenotype. Despite progress in the genetic diagnosis of DSD, most 46,XY DSD cases remain
idiopathic.

Methods To determine the genetic causes of 46,XY DSD, we studied 165 patients of Tunisian ancestry, who pre-
sented a wide range of DSD phenotypes. Karyotyping, candidate gene sequencing, and whole-exome sequencing
(WES) were performed.

Results Cytogenetic abnormalities, including a high frequency of sex chromosomal anomalies (85.4%), explained the
phenotype in 30.9% (51/165) of the cohort. Sanger sequencing of candidate genes identified a novel pathogenic vari-
ant in the SRY gene in a patient with 46,XY gonadal dysgenesis. An exome screen of a sub-group of 44 patients with
46,XY DSD revealed pathogenic or likely pathogenic variants in 38.6% (17/44) of patients.

Conclusion Rare or novel pathogenic variants were identified in the AR, SRD5A2, ZNRF3, SOX8, SOX9 and HHAT genes.
Overall our data indicate a genetic diagnosis rate of 41.2% (68/165) in the group of 46,XY DSD.

Keywords Disorders of sex development (DSD), 46,XY DSD, Cytogenetic abnormalities, Whole exome
sequencing(WES)
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Background

Differences/Disorders of Sex Development (DSDs)
are defined as congenital conditions with a discrep-
ancy between chromosomal, gonadal, and phenotypic
sex [1]. They represent a major clinical concern that
is most often present in newborns or adolescents [2].
The prevalence of DSD is often underestimated since
the diagnosis can be relatively late, at puberty or dur-
ing adulthood and, in some countries, sexual issues are
still sensitive, resulting in a reluctance to seek clinical
counselling [3]. This may explain why in Saudi Arabia
and Egypt, the incidence of ambiguous genitalia is esti-
mated to be 1:2,500 and 1: 3,000 of live births, respec-
tively, whilst in European countries it is estimated at 1:
4,500-1: 5,500 of live births [4—7].The data could also
reflect the high rate of consanguinity, especially in
developing countries, where autosomal recessive forms
of DSD are more prevalent [8]. Population isolates may
also contribute to the presence of rare or novel variants
with a limited geographic range [8].

Forty-six ,XY DSD can be due to chromosome abnor-
malities or genetic variants in the genes involved in the
development or function of the male gonad as well as
anomalies of downstream target tissues [9]. In most
studies, the genetic cause is established in less than 50%
of 46,XY DSD cases [1, 9, 10]. At a molecular level path-
ogenic variants in the AR, NR5AI, SRDSA2, ZFPM2,
HSD17B3 and DHH genes are the most frequent causes
of 46,XY DSD [9, 10]. The aim of this study was to
define the genetic etiology in a large cohort of 46,XY
DSD patients from a North African population and
compare these data to those observed in other popu-
lations. The cytogenetic analysis and molecular gene
approaches resulted in a combined diagnosis yield of
41.2% (68/165) for this DSD subgroup. Cytogenetic
analysis detected autosomal or sex chromosome anom-
alies in 30.9% of all cases, whereas WES identified rare
or novel variants in the AR, SRD5A2, ZNRF3, SOXS8,
SOX9 and HHAT genes (17/44 cases; 38.6%). These
results emphasize the usefulness of both cytogenetic
approaches as well as exome sequencing to make an
accurate genetic diagnosis for a better genetic coun-
seling and knowledge-based management of this group
of patients.

Patients and methods
Cohort and study design
A total of 165 patients with DSD were referred for genetic
consultation in the department of Cytogenetic, Molecu-
lar biology, and Biology of Human Reproduction, Teach-
ing hospital Farhat Hached, Sousse, Tunisia over a period
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of 3 years (2018-2020). The local Ethics Board of the Uni-
versity Teaching Hospital Farhat Hached approved the
present study (IRB00008931) and written consents were
taken from adult probands or from the parents when the
patient was under 18 years. The patients presented with a
range of clinical DSD profiles and their ages ranged from
birth to 35 years. They underwent a complete clinical
examinations, including genital examination, family his-
tory and examination for the presence of somatic abnor-
malities. Imaging examination and hormonal evaluation
were also carried out according to each case. Patients
with suspected or confirmed congenital adrenal hyper-
plasia (CAH) were excluded from this study. All patients
are from Tunisian ancestry.

Genetic analysis

Cytogenetic studies

Reverse Heat Giemsa (RHG) banded karyotype was
performed on metaphase chromosome preparations
obtained from peripheral blood lymphocytes of both
patients and parents according to standard protocol
(450-550 band level). A minimum of 20 R-banded meta-
phase chromosomes were analyzed using Cytovision®
Karyotyping software version 4.0. Karyotypes were clas-
sified according to the International System of Human
Cytogenetic Nomenclature (ISCN 2020) [11]. Fluores-
cent in situ Hybridization (FISH) was carried out on
metaphase chromosomes of the patients according to
the standard protocol, using commercial probes. Array
Comparative genomic hybridization (aCGH) 4 x 44 K
micro-arrays was performed using the Agilent platform
according to the manufacturer’s instructions (Feature
Extraction 9.1, CGH Analytics 4.5, Santa Clara, Califor-
nia, United States). An abnormal ratio greater than+0.58
or lower than —0.75 was considered as an alteration. An
in silico analysis of the unbalanced regions was executed
using UCSC Genome Browser (https://genome.ucsc.
edu/), the Database of Chromosome Imbalance and Phe-
notype in Humans using Ensemble Resources (DECI-
PHER: https://decipher.sanger.ac.uk/), the Database of
Genomic Variants (DGV: http://dgv.tcag.ca/dgv/app/
home) and the Online Mendelian Inheritance in Man
database (OMIM: https://omim.org/).

Sanger sequencing

Genomic DNA was extracted from the peripheral blood of
the patient using the FlexiGene DNA Kit (Qiagen, Hilden,
Germany). Direct Sanger sequencing was performed
using the Big Dye Terminator V3.1 Cycle Sequencing, on
the ABI 3730XL sequencer (Applied Biosystems, Foster
City, CA, USA). Sequencing data were analyzed by SeqS-
cape 2.0 software (Applied Biosystems).


https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://decipher.sanger.ac.uk/
http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
https://omim.org/
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Whole exome sequencing

The WES approach was performed on DNA from 44 XY
individuals who had a complete clinical investigation
including examination of genitalia, hormonal screens
and, where possible, gonad histology. All of these patients
presented with a broad spectrum of 46,XY DSD pheno-
types for which the underlying cause is unknown.

Exonic and adjacent intronic sequences were enriched
from genomic DNA using Agilent SureSelect Human All
Exon V4, and paired-end sequencing was done with the
TruSeq v3 chemistry on Illumina HiSeq2000 platform.
Based on the manufacturer’s proprietary software, reads
were mapped using the Burrows-Wheeler Aligner. Single
nucleotide variants (SNV) and small insertions or dele-
tions (Indels) were generated with GATK 1.6 version.
BAM files were also carried out using SAMtools version
0.1.18. GATK. Unified Genotyper software was used for
calling single nucleotide polymorphism (SNP) and Indels
variants for each patient.

The annotated VCF files were then formatted to be
used as a Microsoft Excel spreadsheet software and a
selection of variants according to well-defined crite-
ria (degree of pathogenicity, type of variant, frequency
of the variant in all populations, including sub popu-
lation) was performed. Synonymous, intronic and
non-coding RNA variants were removed. Missense,
nonsense, insertion/deletion and splice-site variants
that were homozygous with a Minor Allele Frequency
(MAF) of>0.01 were excluded and heterozygous vari-
ants with a MAF of >0.001 according to the GnomAD
database (https://gnomad.broadinstitute.org/) were
also excluded.

According to the clinical data of each patient, the analy-
sis of variants was performed through a range of web-based
bioinformatics tools. The variant Effect Predictor(VEP)
bioinformatics tool on the Ensembl website (http://www.
ensembl.org/homosapiens/userdata/uploadvariations),
gnomAD(https://gnomad.broadinstitute.org/),ClinVar
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(https://www.ncbi.nlm.nih.gov/clinvar/) and Database of
Genomic Variants (http://dgv.tcag.ca/dgv/app/home) were
used to annotated the novel variants.

The possible impact on protein structure and func-
tion was evaluated to determine the pathogenicity of
the variants based on individual scores made by Sorting
Intolerant from Tolerant (SIFT),Polymorphism pheno-
typing V2( PolyPhen2) and Rare Exome Variant Ensem-
ble Learner (REVEL; [12]) tools.

The Clustal Omega tool (https://www.ebi.ac.uk/
Tools/msa/clustalo/) was used to generate alignments
between three or more protein sequences. The Hope tool
was used to analyze the structural effects of a point varia-
tion in a protein sequence [13].

Clinical significance was established according to the
2015 American College of Medical Genetics and Genom-
ics and Association for Molecular Pathology (ACMG) in
order to establish a better genotype—phenotype correla-
tion. [14]. Potentially pathogenic variants were verified by
Sanger sequencing.

The WES cohort of 46,XY DSD consisted of 19 indi-
viduals raised as females and 25 raised as males. Within
this group, 17 cases were syndromic and 27 cases non-
syndromic cases.

Results

The most common feature at consultation was atypi-
cal external genitalia (67 patients) or typical male exter-
nal genitalia with azoospermia (42 patients). A total of
30 patients presented with other congenital anomalies
including intellectual deficiency, dysmorphic features,
heart defects growth delay and cerebral anomalies. Pri-
mary amenorrhea and delayed puberty were reported
in 18 and 8 cases respectively (Table 1). In this cohort,
the patients were classified into three groups: Sex chro-
mosome DSD, autosomal chromosomal abnormalities
and 46,XY DSD (Table 1). 66% of the studied patients

Table 1 Presentation of different categories of studied DSD Tunisian cohort

Classification Diagnostic criteria No
Sex chromosome DSD (No =47) Azoospermia 42
Atypical genitalia & congenital anomalies 2
Atypical genitalia 3
Autosomal chromosome anomalies DSD & congenital anomalies 8
46,XY DSD (No=109) Atypical genitalia 64
Primary amenorrhea 18
Delayed puberty 8
DSD & congenital anomalies 20

Total number 165

Abbreviations: DSD: Disorders of sex development


https://gnomad.broadinstitute.org/
http://www.ensembl.org/homosapiens/userdata/uploadvariations
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https://www.ncbi.nlm.nih.gov/clinvar/
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Fig. 1 Distribution of patients with sex chromosome DSD according to their karyotype. 47,XXY was the most common observation

(110/165) were diagnosed as having 46,XY DSD of whom
23% were raised as females.

Cytogenetic results

The proportions of different categories of DSD are shown
in Table 1 and the distribution of patients with sex chro-
mosome DSD in relation to their karyotype is illustrated
in Fig. 1.

Sex chromosome anomalies were detected in 48/165
patients (29.1%) and autosomal chromosome abnormali-
ties were detected in three individuals (1.8%). Klinefelter
syndrome (KS) was the most prevalent chromosome sex
abnormality in (87.2%) and genetic cause of azoospermia
(83.3%) in males.

aCGH was performed on twenty patients based on
their clinical presentation, suggesting a contiguous gene
syndrome or an a priori assumption of the involvement of
rearrangements affecting known gonadal genes or their
regulatory sequences with various other extragonadal
malformations. In 8 patients, anomalies were observed
(Table 2).

These included five cases with intra-chromosomal
deletions, two cases of intra-chromosomal duplications,
and one case with an inversion duplication/deletion
(invdupdel) chromosome imbalance (Table 2). Of these
chromosomal anomalies, genes known to cause 46,XY
DSD were identified for 4 patients (Table 2) including
DMRTI, GATA4 and NROBI. FISH analysis confirmed
the heterozygous deletion of the GATA4 gene in patient
2 and a duplication of the NROBI gene in patient 3. The
patient 1 presented the Wolf-Hirschhorn syndrome
(WHS) [OMIM#194190]. In addition to the typical WHS
phenotype, he presented a hypospadias, micropenis and
cryptorchidism. The 4p16.3 deletion presumably results
in haploinsufficiency of the MSX1 gene [OMIM#142983]
whose absence might be indirectly responsible for the

hypospadias phenotype as this gene contributes to the
spatiotemporal regulation of GnRH transcription dur-
ing development [15]. In three patients (patients 6-8),
there was no obvious candidate gene located within the
chromosomal anomaly. Clinical details and cytogenetic
results are summarized in Table 2.

Sequencing data

Exome sequencing was performed in a total of 44
patients with 46,XY DSD. Amongst them, 27 were non-
syndromic and 17 presented with somatic anomalies.
Of the 44 patients, a genetic cause was established in 17
cases (38.6%) of whom 13 presented non-syndromic DSD
form and 4 with syndromic forms. Likely benign (LB) and
variants of uncertain significance (VUS) were identified
in 11/27 non-syndromic individuals (40.7%) and 4/17
(23.5%) of syndromic individuals. Pathogenic and likely
pathogenic variants in the following genes: AR (n=6),
SRD5A2 (n=2), LHCGR (n=1), ZNRF3 (n=1), HHAT
(n=1), SOX8 (n=1), IER3IP I(n=1), SRY (n=1), SOX9
(n=1), FLNA (n=1) and PEXI (n=1). The Clinical and
molecular findings are summarized in Table 3.

The most common genetic diagnosis was variants in
the androgen receptor (26%, 7/27).

A de novo pathogenic variant (p.S426*) in the AR gene
was observed in two sisters who presented complete
androgen insensitivity syndrome (CAIS). Two other
affected girls with CAIS from unrelated families (DSD3
and DSD4) shared a pathogenic variant (p.G744E), sug-
gesting a possible founder effect. We identified novel or
rare likely pathogenic variants in the ZNRF3 (DSD 11),
HHAT (DSD 12), and SOX8 genes (DSD 30). A girl with
46,XY complete gonadal dysgenesis carried novel mis-
sense heterozygous ZNRF3 variant (p.I338M). Accord-
ing to SIFT (0.01), PP2 (0.519) and REVEL (0.461)
scores, this variant is likely to be disease causing. Isole-
ucine 338 is a highly conserved residue within the long
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p.I338M p.R312S

A Human 331 PHCRENIIEQ-KG 343 B Human 307 PALLMRLDGLTPPA 320
Mouse 328 PHCRENITEQKGN 340 Mouse 312 PALLMRLDGLTPPP 326
Chicken 376 PHCRENITEQKKG 388 Chicken 305 AALLLRMDGLRPPA 319
Xenopus 304 PHCRHNIIDOKGG 316 Xenopus 304 PALIVRLDGLDPPA 318
Zebrafish 305 PHCRENIIDOKGN 317 Zebrafish 311 VSLLVRLDGLEPPT 325
55 220 240 293\é34 936 153 235 239 311 426 493

N-terminal -[ l l RING ]C-:emi.nnl

\

/ p.S554N
/

\
e »
\

Intracellular domain

\
p-R621S p.R768CG C.2767+5¢\> A

C p :fzsp
Human 219 GOTHGPPTPPTTPK 233
Mouse 217 GOTHGPPTPPTTPK 231

Chicken 229 GOQTHGPPTPPTTPK 243
Xenopus 225 GONHGPPTPPTTPK 239
Zebrafish

207 GHTHGPPTPPTTPK 221

p.E156D

\

C-terminal

Human SOX8 219 GOQTHGPPTPPTTPK 233
Human SOX9 229 GOSQGPPTPPTTPK 243

SOXE —{

Human SOX10233 GQSHGPPTPPTTPK 247

Fig. 2 A Schematic representation of ZNRF3 protein indicating the known functional domains. The sequence alignment indicating the position
and evolutionary conservation of the mutated isoleucine 338 residue, immediately adjacent to the RING finger domain. Previously published
variants linked to 46,XY DSD are shown and located within the intracellular domain. B Schematic representation of HHAT protein indicating the
position of the mutated p.R312 residue. Other published variants associated with this syndromic form of 46,XY DSD are indicated. C Representation
of the SOX8 protein showing the position of the mutated p.T226 residue located in the evolutionary conserved TA1 domain. The only other SOX8
variant known to be associated with 46,XY DSD is the p.E156D mutation located within the HMG-box. Right, the mutated threonine residue is
conserved in the SOXE group of proteins. DIM, DNA-dependent dimerization domain; HMG, high mobility group; MBOAT, Membrane Bound
O-Acyltransferase domain; TA, transactivation domain; TM, transmembrane domain; SP, signal peptide

intracellular domain (Fig. 2A), immediately adjacent to
the ring domain (amino acids 293-334), which is respon-
sible for the E3 ubiquitin ligase activity. A newborn
46,XY girl (DSD 12) presented hydrocephalus, skeletal
malformations, bilateral anophtalmos and agenesis of the
corpus callosum carried a very rare homozygous variant
(p-R312S) in HHAT gene (DSD 12). The evolutionary con-
served p.R312 residue is located in the Membrane Bound
O-Acyltransferase domain 2 (MBOAT 2; Fig. 2B), which
is required to palmitoylate Hedgehog proteins includ-
ing SHH and DHH [16]. The in silico tools PP2 (0.99),
SIFT (0.04) and REVEL (0.812) showed that this variant
is likely to be disease causing. Hope tool predicted this
variant to be damaging for the protein since the mutation
introduces a more hydrophobic residue at this position
and this can result in loss of hydrogen bonds and/or dis-
turb correct folding. A novel heterozygotic p.T226P vari-
ant in SOX8 gene was identified in a 46,XY female with
probable testicular regression syndrome (high FSH, LH
levels, no residual gonad, absent vagina and uterus). The
T226 residue, located within the transactivation domain
1, is highly conserved among vertebrates and within the

SOXE group of proteins (Fig. 2C). PP2 prediction tool
indicated that this variant is likely disease causing. Hope
predicted this variant to be likely damaging to the pro-
tein since it is located in an important domain for the
main activity of the protein. The charge of the wild-type
residue will be lost, and that change can cause loss of
interactions with other molecules or residues. The inher-
itance pattern of both the ZNRF3 and SOX8 variants is
unknown as parents DNA was unavailable. Both variants
are absent from all public databases.

A rare homozygous variant in PEXI gene (p.G843D)
was identified in a child boy (DSD 17) with syndromic
form of DSD, including microcephaly, partial agenesis
of the corpus callosum, dysmorphic features and unilat-
eral cryptorchidism. SIFT (0), PP2 (1) and REVEL (0.984)
prediction tools indicated that this variant is likely dis-
ease causing.

Discussion

Sex chromosome as well as autosomal anomalies were
present in 30.9% of the 46,XY DSD cohort, with the
majority classified as 47,XXY Klinefelter’s syndrome. This
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is similar to frequencies reported by Mazen et al., 2021
studying a North African cohort, but higher than those
reported in other studies [17]. As suggested by Mazen
et al,, 2021, this rate may be due to a recruitment bias
as the research center in Tunisia is a reference centre
for cytogenetics. However, it indicates that a consider-
able proportion of 46,XY DSD cases is due to chromo-
some anomalies that can be detected during routine
karyotyping. aCGH detected further 8 individuals with
chromosomal anomalies, associated with 46,XY DSD in
4 patients.

WES is considered the best method for identifying dis-
ease causing gene variants in DSD due to the complex-
ity of the phenotypes [18]. Current data indicate that
approximately more than half of patients with 46,XY
DSD still lack a definite clinical diagnosis at the genetic
level after WES [10, 19]. In this North African cohort of
DSD, the genetic cause was established in 41.2% (68/165)
of the total cohort, with a genetic cause identified in
38.6% of patients following WES. Recent cohort studies,
using WES rather than targeted NGS panels have given
a diagnosis yield in 46,XY DSD cohorts of 43% and 51%
respectively [10, 20]. The lower yield of 38.6% reported
here may reflect the proportion of undervirilised men in
the cohort, a group that is difficult to reach a definitive
clinical diagnosis or establish a genetic etiology [21, 22].
However, similarly to other studies the most common
genetic cause was hemizygous variants in the AR [23,
24]. A total of 7 individuals, including two sisters, carried
pathogenic variants in the AR. The G744E variant was
observed in two unrelated patients, suggesting a possible
founder effect for this variant.

A proportion of XY males carrying deletions of 8p23.1
that encompasses the GATA4 gene have hypospadias and
bilateral cryptorchidism [25, 26]. Here, a 46,XY female
with atypical external genitalia (micropenis, small pal-
pable right testis) carried a 4 Mb microdeletion in the
8p23.1 encompassing the GATA4 gene [27, 28]. Patho-
genic variants in GATA4 have been identified in 46,XY
DSD with or without cardiac heart defect [27-29]. To our
knowledge this is the first case with a 8p23 microdeletion
in a patient with 46,XY DSD raised as female.

WES revealed several very rare causes of 46,XY DSD
including the genes ZNRF3, SOX8 and HHAT. A novel
heterozygous missense variant (p.I338M) in ZNRF3 was
identified in a 46,XY female with complete gonadal dys-
genesis (DSD11). ZNRF3 functions in testis-determina-
tion by inhibiting canonical pro-ovary WNT signaling
pathway in XY gonads [30]. ZNRE3 does this by targeting
Frizzled receptors for degradation by ubiquitination and
increased membrane turnover [31]. A total of four rare
or novel heterozygous variants (3 missense and one splice
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region) in ZNRF3 have been reported with both mild
and severe 46,XY DSD [30]. All of these variants, includ-
ing the p.I338M reported here, are located within the
C-terminal intracellular domain portion of the protein
[31], suggesting a possible genotype/phenotype correla-
tion. SOX8 is an high mobility group (HMG)-box tran-
scription factor, which is co-expressed with SOX9 and
NRS5AI/SFI in testis-determination. SOX8 shows func-
tional redundancy with SOX9 and may represses Foxl2
expression [32—34]. Heterozygous missense variants in
SOX8 are associated with either male or female infertility.
Although rearrangements at the SOX8 locus are associ-
ated with 46,XY gonadal dysgenesis, only a single path-
ogenic missense variant, located within the conserved
HMG domain (p.E156D), has been demonstrated to
cause 46,XY gonadal dysgenesis [35]. Here, a novel hete-
rozygous missense variant p.I226P, located within trans-
activation (TA) domain, was carried by a 46,XY female
with testicular regression syndrome. The p.T226 residue
is conserved within the SOXE group of proteins, sug-
gesting a functional role. The mode of inheritance of the
ZNRF3 and SOX8 variants mutation is unknown, as the
parents were unavailable for study. Hedgehog acyltrans-
ferase (HHAT) is an ER-resident multipass membrane
protein consisting of 10 transmembrane domains and 2
re-entrant loops [36]. It is a member of the membrane
bound-O-acyltransferase (MBOAT) family of enzymes
that catalyze the attachment of specific fatty acids to
secreted proteins [37]. Hhat’~ mice display severely
impaired development of fetal Leydig cells, Sertoli cells
and testis cords[16]. In humans, biallelic pathogenic vari-
ants in HHAT are very rare and associated with a wide
spectrum of neurodevelopmental phenotype includ-
ing microcephaly, cerebellar vermis hypoplasia, gonadal
dysgenesis, seizures and thinning of corpus callosum
[16, 38, 39]. Only four families have been described in
the literature and the common features are microceph-
aly and gonadal dysgenesis. Here, we identified a novel
homozygous missense variant (p.R312S) in the conserved
MBOAT domain-2 of HHAT carried by a 46,XY female
with somatic anomalies including hydrocephalus, agen-
esis of the corpus callosum, skeletal malformations and
bilateral anophtalmia.

Conclusion

A combination of cytogenetics and exome sequencing
can explain the genetic cause of 46,XY DSD in just over
40% of all cases. Exome sequencing is particularly use-
ful in detecting very rare genetic causes of DSD in genes
such as ZNRF3, SOX8 or HHAT that would otherwise
have been difficult to determine using other approaches.
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